Encountered an error while implementing deep learning regression model in MATLAB.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Abinas Chopdar
am 25 Feb. 2023
Beantwortet: Sanjana
am 30 Mär. 2023
Following is the code and the error generated while implementing regression model in MATLAB. input vector(traindata(:,1)) is of size 300 and output vector(traindata(:,2)) size is also 300, still I am getting error of size not same. traindata is a cell of size 769x2 each element of length 1x300 double. what am I doing wrong?
load('traindata.mat')
load('testdata.mat')
layers1 = [
sequenceInputLayer(1,MinLength = 300)
convolution1dLayer(4,3,Padding="same",Stride=1)
convolution1dLayer(64,8,Padding="same",Stride=8)
batchNormalizationLayer()
tanhLayer
maxPooling1dLayer(2,Padding="same")
convolution1dLayer(32,8,Padding="same",Stride=4)
batchNormalizationLayer
tanhLayer
maxPooling1dLayer(2,Padding="same")
transposedConv1dLayer(32,8,Cropping="same",Stride=4)
tanhLayer
transposedConv1dLayer(64,8,Cropping="same",Stride=8)
tanhLayer
bilstmLayer(8)
fullyConnectedLayer(8)
dropoutLayer(0.2)
fullyConnectedLayer(4)
dropoutLayer(0.2)
fullyConnectedLayer(1)
regressionLayer];
options = trainingOptions("adam",...
MaxEpochs=600,...
MiniBatchSize=600,...
InitialLearnRate=0.001,...
ValidationData={valdata(:,1),valdata(:,2)},...
ValidationFrequency=100,...
VerboseFrequency=100,...
Verbose=1, ...
Shuffle="every-epoch",...
Plots="none", ...
DispatchInBackground=true);
[net1,info1] = trainNetwork(traindata(:,1),traindata(:,2),layers1,options);
1 Kommentar
Akzeptierte Antwort
Sanjana
am 30 Mär. 2023
Hi,
I understand that you are facing an issue with incompatible input and output sequence lengths,
The above error, is not related to the data as , the input and output data shapes are correct, But if you execute the “analyzeNetwork(layers1)”, from here we can understand the output from the “regressionLayer” has a sequence length of 32 and input layer has a sequence length of 1,this is because of the network architecture you defined. So,I suggest you to try to make changes to the architecture according to your task.
Please refer to the below link for further information,
Hope this helps!
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!