How to calculate 95% confidence interval using regression analysis?

8 Ansichten (letzte 30 Tage)
I have a timeseries dataset of measured lengths of some lines. The dataset consists of dates from oct of one year to march of next year. How do I calculate the 95% confidence interval values using regression analysis for each season (e.g. oct 2003 to March 2004 and so on). Something like this as shown below (CI = 95% confidence interval).
  2 Kommentare
Anwesha Sharma
Anwesha Sharma am 24 Feb. 2023
Thank you so much. This worked perfectly.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Sulaymon Eshkabilov
Sulaymon Eshkabilov am 24 Feb. 2023
If there is a linear fit model for x vs. y(x), then fitlm() can be used, e.g.:
x = (0:.1:13)';
Noise = 35*randn(size(x));
y = @(x)3*x.^2-5*x+3;
Y =y(x)+Noise;
YT=table(x);
YT.Y=Y;
FM =fitlm(YT, 'Y~x^2+x+1')
FM =
Linear regression model: Y ~ 1 + x + x^2 Estimated Coefficients: Estimate SE tStat pValue ________ _______ _______ __________ (Intercept) 5.1654 8.6403 0.59783 0.55101 x -7.3628 3.0713 -2.3973 0.017962 x^2 3.2304 0.22865 14.128 6.7796e-28 Number of observations: 131, Error degrees of freedom: 128 Root Mean Squared Error: 33.5 R-squared: 0.945, Adjusted R-Squared: 0.944 F-statistic vs. constant model: 1.1e+03, p-value = 2.04e-81
plot(FM)

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by