butterworth and baseline removal filtering
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello. I want to apply butterworth and baseline wandering removal filter on ECG signal. I searched mathworks and found this solution;
does anybody knows what are this variables? such as{ a, b ,Wn , N }
and why the formula of Wn is diffrent :Wn = 12*2/f and Wn=[f1 f2]*2/fs ?
I didn't understand the meaning of the comments
% ======================= start filtered ============================= %%
Wn = 12*2/fs;
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn,'low'); % bandpass filtering
ecg_l = filtfilt(a,b, signal);
%%%% baseline wander filter
f1=0.5; % cuttoff low frequency to get rid of baseline wander
f2=15; % cuttoff frequency to discard high frequency noise
Wn=[f1 f2]*2/fs; % cutt off based on fs
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn); % bandpass filtering
ecg_new = filtfilt(a,b, signal);
0 Kommentare
Antworten (1)
Star Strider
am 23 Feb. 2023
Bearbeitet: Star Strider
am 23 Feb. 2023
The ‘baseline wander filter’ is a bandpass filter with a passband of 0.5 to 15 Hz. (This is too restrictive in my opinion. The upper passband should likely be about 45 Hz.)
Also, if you design such a filter, the appropriate butter call is:
[z,p,k] = butter(n,Wn);
[sos,g] = zp2sos(z,p,k);
(to be certain that the filter is stable, use zp2sos to create a second-order-section implementation), then:
ecg_filt = filtfilt(sos, g, signal);
to filter it.
EDIT — Corrected typographical errors.
.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Digital Filter Analysis finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!