Matlab Transfer function multiple single s terms

2 Ansichten (letzte 30 Tage)
Aaron Frost
Aaron Frost am 20 Feb. 2023
Kommentiert: Paul am 22 Feb. 2023
How can modify this script in order to get the transfer function shown in the picutre. Thanks.
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
A = 1/(C1*R2);
B = 1/(C2*R2);
C = (1/(C1*R1))*(1-G);
D = 1/(C1*C2*R1*R2);
G = (R3+R4)/R3;
%{
Numerator = {[G 0 0] };
Denominator = {[1 0] [A] [B] [C] [0 D]};
T = tf(Numerator, Denominator)
%}
T = tf([G 0 0], {[1] [A] [B] [C] [0 D]})

Akzeptierte Antwort

Sulaymon Eshkabilov
Sulaymon Eshkabilov am 20 Feb. 2023
Here it is:
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
G = (R3+R4)/R3;
A = 1/(C1*R2);
B = 1/(C2*R2);
C = (1/(C1*R1))*(1-G);
D = 1/(C1*C2*R1*R2);
%{
Numerator = {[G 0 0] };
Denominator = {[1 0] [A] [B] [C] [0 D]};
T = tf(Numerator, Denominator)
%}
T = tf([G 0 0], [1 (A+B+C) -D])
T = 21.74 s^2 -------------------------- s^2 - 1.378e07 s - 7.88e09 Continuous-time transfer function.

Weitere Antworten (1)

Walter Roberson
Walter Roberson am 20 Feb. 2023
syms G C_1 R_2 C_2 R_1 s R_3 R_4
G = (R_3 + R_4)/R_3
G = 
vratio = G*s^2/ ( s^2 + s * (1/(C_1*R_2) + 1/(C_2*R_2) + 1/(C_1*R_1)*(1-G)) + 1/(C_1*C_2*R_1*R_2) )
vratio = 
vex = expand(vratio);
[N, D] = numden(vex)
N = 
D = 
Nc = collect(N, s);
Dc = collect(D, s);
vpretty = Nc/Dc
vpretty = 
NCs = coeffs(Nc, s, 'all')
NCs = 
DCs = coeffs(Dc, s, 'all')
DCs = 
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
NC = double(subs(NCs, [C_1, C_2, R_1, R_2, R_3, R_4], [C1, C2, R1, R2, R3, R4]));
DC = double(subs(DCs, [C_1, C_2, R_1, R_2, R_3, R_4], [C1, C2, R1, R2, R3, R4]));
leading = DC(1);
NC = NC ./ leading;
DC = DC ./ leading;
sys = tf(NC, DC)
sys = 21.74 s^2 -------------------------- s^2 - 1.378e07 s + 7.88e09 Continuous-time transfer function.
  2 Kommentare
Paul
Paul am 22 Feb. 2023
But the CST can handle this directly without too much complication, even if the desire is to have a general expression
s = tf('s');
G = @(R_3,R_4) ((R_3 + R_4)/R_3);
vratio = @(C_1,C_2,R_1,R_2,R_3,R_4) G(R_3,R_4)*s^2/ ( s^2 + s * (1/(C_1*R_2) + 1/(C_2*R_2) + 1/(C_1*R_1)*(1-G(R_3,R_4))) + 1/(C_1*C_2*R_1*R_2) );
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
vratio(C1,C2,R1,R2,R3,R4)
ans = 21.74 s^2 -------------------------- s^2 - 1.378e07 s + 7.88e09 Continuous-time transfer function.
Unrelated comment, but I have my suspicions about the expression for vratio in the question. I thought that circuits composed of just (positive) resistors and (positive) capacitors can't be unstable, whereas vratio clearly is.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by