REQUIRE CODE FOR AKAIKE INFORMATION CRITERIA (AIC) VALUE FOR ESTIMATED MODEL

14 Ansichten (letzte 30 Tage)
I need to calculate Akaike Information Criterion value for my model. I need the code.

Akzeptierte Antwort

Atharva
Atharva am 29 Mär. 2023
The Akaike Information Criterion (AIC) value can be calculated using the log-likelihood function and the number of parameters in the model. Here is an example-
% assume that we have a vector of observed data 'y', and a vector of predicted data 'y_pred'
% calculate the log-likelihood function for the model
n = length(y);
sigma2 = var(y-y_pred);
logLikelihood = -0.5*n*log(2*pi) - 0.5*n*log(sigma2) - (1/(2*sigma2))*sum((y-y_pred).^2);
% calculate the number of parameters in the model
numParams = ; % insert the number of parameters in your model here
% calculate the AIC value
AIC = -2*logLikelihood + 2*numParams;

Weitere Antworten (0)

Kategorien

Mehr zu Multivariate Models finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by