Newton Raphson method for a system of non-linear equations?
    43 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Ali Almakhmari
 am 12 Feb. 2023
  
    
    
    
    
    Kommentiert: Torsten
      
      
 am 12 Feb. 2023
            If I have a non-linear system of two equations that are each in terms of two variables x and y:
eqn1(x,y) = 0
eqn2(x,y) = 0
How will I go about solving those two equations using Newton-Raphson in MATLAB? I know how to solve this system using the MATLAB's Solve function but not Newton-Raphson.
0 Kommentare
Akzeptierte Antwort
  Alan Stevens
      
      
 am 12 Feb. 2023
        Here's a simple example for you to follow:
% Functions
f = @(x,y) x^2 + y - 5.94;  % i.e. the equation is x^2+y=5.94
g = @(x,y) x + y^2 - 3.41;  % similarly this represents equation x+y^2=3.41
F = @(x,y)[f(x,y); g(x,y)];
% Jacobian
% J = [df/dx, df/dy;
%      dg/dx, dg/dy];
J = @(x,y) [2*x 1; 1 2*y];
% Initial guess
xy = [1; 1];
% Tolerance
tol = 10^-6;
err = 1;
while err>tol
      xynew = xy - J(xy(1),xy(2))\F(xy(1),xy(2));
      err = abs(xynew-xy);
      xy = xynew;
end
disp(xy)
3 Kommentare
  Alan Stevens
      
      
 am 12 Feb. 2023
				Since Newton-Raphson is essentially numerical it seems pointless to use symbolics at all! 
However, you might try J = @(x,y) j(x,y)
I don't have the symbolic toolbox, so can't actually check!
  Torsten
      
      
 am 12 Feb. 2023
				% Functions
syms x y
f = x^2 + y - 5.94;  % i.e. the equation is x^2+y=5.94
g = x + y^2 - 3.41;  % similarly this represents equation x+y^2=3.41
F = [f; g];
% Jacobian
% J = [df/dx, df/dy;
%      dg/dx, dg/dy];
J =  jacobian(F);
F = matlabFunction(F)
J = matlabFunction(J)
% Initial guess
xy = [1; 1];
% Tolerance
tol = 10^-6;
err = 1;
while err>tol
      xynew = xy - J(xy(1),xy(2))\F(xy(1),xy(2));
      err = abs(xynew-xy);
      xy = xynew;
end
disp(xy)
disp(F(xy(1),xy(2)))
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


