Calculate the difference between minimum values of a parabola and straight line (from a plot)
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Alina Abdikadyr
am 10 Feb. 2023
Kommentiert: Les Beckham
am 10 Feb. 2023
Hello everyone, please could you help me with a code.
How I can calculate the values from a plot? I need the difference between straight line (P) and between the minimum value of a parabola (P) for each curve.
So, for example in this curve, the difference between the straight blue curve and the first parabola, then the next straight line and green parabola and so on.
My code is:
clear all; close all
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
end
0 Kommentare
Akzeptierte Antwort
Les Beckham
am 10 Feb. 2023
Bearbeitet: Les Beckham
am 10 Feb. 2023
Maybe this?
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
[pmin, imin] = min(p); % find the min p
deltas(k1) = Ph(1) - pmin; % calculate the difference
tolerance = 5000; % or whatever you want
if (abs(deltas(k1) - 300000) < tolerance)
fprintf('delta = %8.1f at h = %4.1f, rho = %.5f, V = %.2f, Ph = %.1f, p = %.1f\n', ...
deltas(k1), h, rho(imin), V(imin), Ph(imin), p(imin))
end
end
legend(compose('h = %.1f', hv), 'location', 'northwest')
grid on
8 Kommentare
Les Beckham
am 10 Feb. 2023
It just represents how close to 300000 the delta has to be to make the code print the results. Adjust as desired.
Weitere Antworten (1)
Torsten
am 10 Feb. 2023
Bearbeitet: Torsten
am 10 Feb. 2023
syms h V W S rho cd0 k cl Psl
eqn = V == sqrt(2*W/rho/S/cl);
cl = solve(eqn,cl);
cd = cd0 + k * cl^2;
D = 0.5 * rho * V * V * S * cd;
p = D*V;
Vmin = solve(diff(p,V)==0,V);
pmin = subs(p,V,Vmin);
Ph = Psl*(rho/1.225)^0.75;
hnum = 0:0.01:10;
Wnum = 60000;
Snum = 28.2;
rhonum = 1.225*exp(-hnum/10.4);
cd0num = 0.02;
knum = 0.04;
Pslnum = 741000;
for i = 1:numel(hnum)
Phnum(i) = double(subs(Ph,[rho Psl],[rhonum(i),Pslnum]));
pm = double(subs(pmin,[W S rho cd0 k],[Wnum Snum rhonum(i) cd0num,knum]));
pminnum(i) = pm(end);
deltaP(i) = Phnum(i)-pminnum(i);
end
format long
deltaP.'
idx = deltaP > 2.8e5 & deltaP < 3.2e5; % select those deltaP with 2.8e5 <= deltaP < = 3.2e5
[hnum(idx).' deltaP(idx).'] % Show these values together with the corresponding h values
Siehe auch
Kategorien
Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!