Can't integrate function using Matlab

1 Ansicht (letzte 30 Tage)
David Harra
David Harra am 9 Feb. 2023
Kommentiert: David Harra am 9 Feb. 2023
I am trying to do a basic integration of a formula for 4 different values. After doing a bit of reading, apparently I need to create a function handle but I am not getting any success. I have put my attempt below. I might be missing more though.
L=0:100;
L_bar=25;
sigma_d =[0.25, 0.5, 0.75, 1.0];
mu = log(L_bar) - 0.5*(sigma_d).^2;
L_tilda = exp(mu);
% eta_r = P.*exp(-r./L);
% I want to integrate eta from zero to infinity where P has changing
% variables to give 4 different plots.
r = 0:100;
% I was just testing below to see if a loop would run before attempting to
% plot anything
P = zeros(1,length(L));
fun = @(r) P.*exp(-r./L);
for ii=1:numel(sigma_d)
P= 1./(L.*sqrt(2*pi)*sigma_d(ii)).*exp(-log(L/L_tilda(ii)).^2/(2*sigma_d(ii)^2)) ;
eta_r = integral(fun,0,inf);
end

Akzeptierte Antwort

Torsten
Torsten am 9 Feb. 2023
L_bar=25;
sigma_d =[0.25, 0.5, 0.75, 1.0];
mu = log(L_bar) - 0.5*(sigma_d).^2;
L_tilda = exp(mu);
r = 0:100;
for ii=1:numel(sigma_d)
P= @(L)1./(L.*sqrt(2*pi)*sigma_d(ii)).*exp(-log(L/L_tilda(ii)).^2/(2*sigma_d(ii)^2));
fun = @(L,r) P(L).*exp(-r./L);
eta_r(ii,:)=integral(@(L)fun(L,r),0,Inf,'ArrayValued',true);
end
plot(r,eta_r)
grid on
  4 Kommentare
Dyuman Joshi
Dyuman Joshi am 9 Feb. 2023
You will have to apply that individually -
L=0:100;
L_bar=25;
sigma_d =[0.25, 0.5, 0.75, 1.0];
mu = log(L_bar) - 0.5*(sigma_d).^2;
L_tilda = exp(mu);
r = 0:100;
LineTypes={'-' '--' ':' '-.'};
for ii=1:numel(sigma_d)
P= @(L)1./(L.*sqrt(2*pi)*sigma_d(ii)).*exp(-log(L/L_tilda(ii)).^2/(2*sigma_d(ii)^2));
fun = @(L) P(L).*exp(-r./L);
eta_r(ii,:)=integral(@(L)fun(L),0,Inf,'ArrayValued',true);
plot(r,eta_r(ii,:),'LineStyle', LineTypes{ii}, 'LineWidth', 1.5)
hold on
end
xlabel('r (\mu m)')
xticks([0 20 40 60 80 100])
ylabel('\eta(r)');
ylim([0 1])
title('Spatial Correlation Function LBAR=25')
set(gca, 'FontSize',10);
legend('\sigma_d =0.25', '\sigma_d= 0.5', '\sigma_d =0.75', '\sigma_d = 1')
David Harra
David Harra am 9 Feb. 2023
Perfect. Thank you so much

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Dyuman Joshi
Dyuman Joshi am 9 Feb. 2023
You will have to explicitly change the function handle to change its definition
P=pi;
fun = @(x) P*x;
P=3;
%fun(3) is not equal to 3*3=9
fun(3)
ans = 9.4248
L=0:100;
L_bar=25;
sigma_d =[0.25, 0.5, 0.75, 1.0];
mu = log(L_bar) - 0.5*(sigma_d).^2;
L_tilda = exp(mu);
% eta_r = P.*exp(-r./L);
% I want to integrate eta from zero to infinity where P has changing
% variables to give 4 different plots.
r = 0:100;
% I was just testing below to see if a loop would run before attempting to
% plot anything
for ii=1:numel(sigma_d)
P= 1./(L.*sqrt(2*pi)*sigma_d(ii)).*exp(-log(L/L_tilda(ii)).^2/(2*sigma_d(ii)^2));
fun = @(x) P.*exp(-x./L);
eta_r=integral(fun,0,Inf,'ArrayValued',true)
end
Warning: Inf or NaN value encountered.
eta_r = 1×101
NaN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0030 0.0109 0.0307 0.0718 0.1437 0.2535 0.4022 0.5842 0.7870 0.9943 1.1886 1.3546 1.4810 1.5614 1.5946 1.5834 1.5336 1.4531 1.3500 1.2326
Warning: Inf or NaN value encountered.
eta_r = 1×101
NaN 0.0000 0.0000 0.0003 0.0023 0.0097 0.0269 0.0572 0.1019 0.1598 0.2281 0.3028 0.3800 0.4560 0.5276 0.5924 0.6491 0.6965 0.7345 0.7630 0.7827 0.7940 0.7979 0.7951 0.7867 0.7733 0.7560 0.7354 0.7122 0.6871
Warning: Inf or NaN value encountered.
eta_r = 1×101
NaN 0.0002 0.0060 0.0263 0.0626 0.1109 0.1656 0.2219 0.2764 0.3268 0.3717 0.4106 0.4433 0.4701 0.4914 0.5076 0.5192 0.5268 0.5309 0.5319 0.5303 0.5265 0.5209 0.5137 0.5053 0.4958 0.4855 0.4746 0.4632 0.4514
Warning: Inf or NaN value encountered.
eta_r = 1×101
NaN 0.0099 0.0513 0.1074 0.1642 0.2156 0.2596 0.2959 0.3252 0.3482 0.3658 0.3789 0.3882 0.3942 0.3977 0.3989 0.3984 0.3963 0.3931 0.3889 0.3839 0.3783 0.3722 0.3658 0.3590 0.3521 0.3450 0.3378 0.3305 0.3233
Since you are dividing by 0 (first element of L), you get a NaN and thus the warning from the integral() solver.
  3 Kommentare
Dyuman Joshi
Dyuman Joshi am 9 Feb. 2023
"I need to be integrating with respect to L"
You should have mentioned that before. By the definition of the function handle, I took it as you are integrating w.r.t r
Now as you want to integrate w.r.t L, is there a need to define L=0:100?
Or L is a variable in the definition of P as well?
David Harra
David Harra am 9 Feb. 2023
Aplogies
So my definition of P is
P= 1./(L.*sqrt(2*pi)*sigma_d).*exp(-log(L/L_tilda).^2/(2*sigma_d^2))
So L is definied within P and L defined as a length. I think I could maybe make this a fixed constant of L=100 and keep r=0:100
The integral I am trying to calculate is
I am changing values of L_tilda and sigma 4 times to get 4 different plots.
Hopefully this is more clear :)

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu MATLAB finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by