Epicycloid curve calculating arch length using integral method

3 Ansichten (letzte 30 Tage)
Im trying to calculate the length of the Epicycloid curve.
i have the x and y coordinates right and i get the correct looking plot, but cant figure out how to calculate the length of the epicycloid curve.
I already tried to calculate, but didnt get results that make sense.
Any help would be greatly appreciated.
Here is a picture of what im calculating:
clear all
R=8;
L=6;
Alfa=2*pi;
Bertta=4*pi;
T=2*pi/Alfa;
syms t
alfa0=Alfa*t;
beta0=Bertta*t;
%%%%%%%%%%%%%%%%%%% %R Coordinates
x0(t)=R*cos(alfa0);
y0(t)=R*sin(alfa0);
%%%%%%%%%%%%%%%%%% %L Coordinates
x(t)=x0(t)+L*cos(alfa0+beta0);
y(t)=y0(t)+L*sin(alfa0+beta0);
%
%x1(t)=diff(x,t)
%y1(t)=diff(y,t)
%t0=2;
%dx=x1(t0)
%dy=y1(t0)
%s0 = @(t) sqrt( ( R.*cosd(t)+L.*cosd(3.*t) ).^2 + (R.*sind(t)+L.*sind(3.*t)).^2);
%s = integral(s0,0,2*pi)
%pit = sqrt(1+(dy/dx).^2*dx)
%lenght = integral(pit,0,2*pi)
fplot(x,y,[0,T],'linewidth',2)
title(['R = ',num2str(R),', L = ',num2str(L),', s = ',num2str(5)])
hold off
grid
axis equal
xlabel('x')
ylabel('y')

Akzeptierte Antwort

Torsten
Torsten am 7 Feb. 2023
curvelength = vpaintegral(sqrt(diff(x,t)^2+diff(y,t)^2),t,0,T)

Weitere Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by