How to present (x(t))'', (θ(t))'' in symbolic version matlab?
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Matthew Worker
am 6 Feb. 2023
Beantwortet: Walter Roberson
am 6 Feb. 2023
There are six equations below (M, m, g, b, L, J are constant):
M*(x(t))'' = F(t) - N(t) - b*(x(t))'
J*(θ(t))'' = P(t)*sin(θ(t))*(L/2) - N(t)*cos(θ(t))*(L/2)
m*(xp(t))'' = N(t)
m*(yp(t))'' = P(t) - mg
xp(t) = x(t) +(L/2)*sin(θ(t))
yp(t) = (L/2)*cos(θ(t))
I want to combine and simplify these 6 symbolic equations into 2 symbolic euqations only presented by x(t), θ(t) and F(t).
However, I do not know how to show the (x(t))'', (θ(t))'' in symbolic version. Can anyone help me with it?
syms x(t)?
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 6 Feb. 2023
syms b J g L M m
syms F(t) N(t) P(t) theta(t) x(t) xp(t) yp(t)
x_prime = diff(x);
x_dprime = diff(x_prime);
theta_prime = diff(theta)
theta_dprime = diff(theta_prime);
xp_prime = diff(xp);
xp_dprime = diff(xp_prime);
yp_prime = diff(yp);
yp_dprime = diff(yp_prime);
eqn1 = M*xp_dprime == F - N - b*x_prime
eqn2 = J*theta_dprime == P*sin(theta)*(L/2) - N * cos(theta)*(L/2)
eqn3 = m*xp_dprime == N
eqn4 = m*yp_dprime == P - m*g
eqn5 = xp == x + (L/2)*sin(theta)
eqn6 = yp == (L/2)*cos(theta)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!