How to present (x(t))'', (θ(t))'' in symbolic version matlab?

11 Ansichten (letzte 30 Tage)
Matthew Worker
Matthew Worker am 6 Feb. 2023
Beantwortet: Walter Roberson am 6 Feb. 2023
There are six equations below (M, m, g, b, L, J are constant):
M*(x(t))'' = F(t) - N(t) - b*(x(t))'
J*(θ(t))'' = P(t)*sin(θ(t))*(L/2) - N(t)*cos(θ(t))*(L/2)
m*(xp(t))'' = N(t)
m*(yp(t))'' = P(t) - mg
xp(t) = x(t) +(L/2)*sin(θ(t))
yp(t) = (L/2)*cos(θ(t))
I want to combine and simplify these 6 symbolic equations into 2 symbolic euqations only presented by x(t), θ(t) and F(t).
However, I do not know how to show the (x(t))'', (θ(t))'' in symbolic version. Can anyone help me with it?
syms x(t)?

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 6 Feb. 2023
syms b J g L M m
syms F(t) N(t) P(t) theta(t) x(t) xp(t) yp(t)
x_prime = diff(x);
x_dprime = diff(x_prime);
theta_prime = diff(theta)
theta_prime(t) = 
theta_dprime = diff(theta_prime);
xp_prime = diff(xp);
xp_dprime = diff(xp_prime);
yp_prime = diff(yp);
yp_dprime = diff(yp_prime);
eqn1 = M*xp_dprime == F - N - b*x_prime
eqn1(t) = 
eqn2 = J*theta_dprime == P*sin(theta)*(L/2) - N * cos(theta)*(L/2)
eqn2(t) = 
eqn3 = m*xp_dprime == N
eqn3(t) = 
eqn4 = m*yp_dprime == P - m*g
eqn4(t) = 
eqn5 = xp == x + (L/2)*sin(theta)
eqn5(t) = 
eqn6 = yp == (L/2)*cos(theta)
eqn6(t) = 

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by