Interference suppression in spread spectrum system
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
MUDASSAR RAZA
am 3 Feb. 2023
Beantwortet: Dr. JANAK TRIVEDI
am 3 Feb. 2023
Interference suppression in spread spectrum system using kalman filter.
please anyone provide the matlab code of this
0 Kommentare
Akzeptierte Antwort
Dr. JANAK TRIVEDI
am 3 Feb. 2023
% Define the system parameters
spreadFactor = 10;
bandwidth = 1;
sigmaNoise = 0.1;
sigmaInterference = 1;
% Define the Kalman filter parameters
A = 1;
B = 1;
C = spreadFactor;
Q = sigmaNoise^2;
R = sigmaInterference^2;
% Initialize the state and covariance matrices
x = [0; 0];
P = [0 0; 0 0];
% Preallocate the arrays for storing the results
xEstimate = zeros(2, 1000);
y = zeros(1, 1000);
% Generate the signals
for k = 1:1000
% Generate the noise and interference
noise = sigmaNoise * randn;
interference = sigmaInterference * randn;
% Generate the spread signal
x(1) = bandwidth * randn;
x(2) = x(1) * spreadFactor + noise + interference;
% Kalman filter prediction step
xEstimate(:, k) = A * x;
P = A * P * A' + Q;
% Kalman filter update step
y(k) = C * x + interference;
K = P * C' / (C * P * C' + R);
xEstimate(:, k) = xEstimate(:, k) + K * (y(k) - C * xEstimate(:, k));
P = (eye(2) - K * C) * P;
end
% Plot the results
figure
subplot(2, 1, 1)
plot(xEstimate(1, :))
title('Estimated Signal')
subplot(2, 1, 2)
plot(y)
title('Observed Signal')
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu State-Space Control Design and Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!