unexpected parameter z3 when using solve command
    2 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
Hi, I am new to matlab and want to solve an eqution.
syms x
eqn = x-((1-1/0.9925)*0.65-0.003)*x^((1/0.66)/(1/0.97))== 20+((1-1/0.9925)*0.65-0.003)*((1/0.97)^(-0.66)*(1-0.97*(1-0.003)-(1-0.97/0.9925)*0.65)^(-0.66));
Then, the following warning pops up.
Warning: Solutions are parameterized by the symbols: z2. To include parameters and conditions in the solution, specify the 'ReturnConditions' value as 'true'. 
> In sym/solve>warnIfParams (line 475)
In sym/solve (line 357)
In Untitled (line 4) 
Warning: Solutions are only valid under certain conditions. To include parameters and conditions in the solution, specify the 'ReturnConditions' value as 'true'. 
> In sym/solve>warnIfParams (line 478)
In sym/solve (line 357)
In Untitled (line 4) 
I edited my code and ran again, then unexpected parameter z3 came up. 
syms x
eqn = x-((1-1/0.9925)*0.65-0.003)*x^((1/0.66)/(1/0.97))== 20+((1-1/0.9925)*0.65-0.003)*((1/0.97)^(-0.66)*(1-0.97*(1-0.003)-(1-0.97/0.9925)*0.65)^(-0.66));
[solx,parameters,conditions] = solve(eqn,x,'ReturnConditions',true)
assume(conditions);
restriction = [100>solx , -100 <solx ];
solz = solve(restriction,parameters)
valx = subs(solx,parameters,solz)
I don't understand what z3 means here and how to get my solution valx. Even the equation inside the root parenthesis seems illogical. Please help me with this. 
solx =
z3^66
parameters =
z3
conditions =
-pi/66 < angle(z3) & angle(z3) <= pi/66 & z3^97 + (576460752303423488*z3^66)/4560864541524069 - 3822084685500913664/1520288180508023 == 0
solz =
root(z^97 + (576460752303423488*z^66)/4560864541524069 - 3822084685500913664/1520288180508023, z, 1)
valx =
root(z^97 + (576460752303423488*z^66)/4560864541524069 - 3822084685500913664/1520288180508023, z, 1)^66
0 Kommentare
Antworten (1)
  Walter Roberson
      
      
 am 31 Jan. 2023
        
      Verschoben: Walter Roberson
      
      
 am 1 Feb. 2023
  
      Should the 0.66 instead be exactly 2/3 ? Should the 0.65 be 2/3 - 1/100 ? 
Should the 0.97 be 1 - 0.003*10 ? 
Is there a relationship between the 0.97 and the 0.9925 ? 
Q = @(v) sym(v);
F = sym(2)/sym(3);
Fm = F - 1/sym(100);
syms x
eqn = x-((1-1/Q(0.9925))*Fm-Q(0.003))*x^((1/F)/(1/Q(0.97))) == 20+((1-1/Q(0.9925))*Fm-Q(0.003))*((1/Q(0.97))^(-F)*(1-Q(0.97)*(1-Q(0.003))-(1-Q(0.97)/Q(0.9925))*Fm)^Q(-F))
%sol = solve(eqn, x, 'returnconditions', true)
vpa(eqn, 10)
vpasolve(eqn, 10)
3 Kommentare
  Walter Roberson
      
      
 am 1 Feb. 2023
				Sure, I show using vpasolve here. The Q() calls are there to convert coefficients to rationals because solve() is intended to find exact closed form solutions whenever possible, and converting to rational reduces floating point round off problems. But most importantly if you want to use solve then you need better precision about exactly what you mean by taking a variable to the power of 0.66
Siehe auch
Kategorien
				Mehr zu Formula Manipulation and Simplification finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!