Way to solve AX=XB

24 Ansichten (letzte 30 Tage)
SATISH SONWANE
SATISH SONWANE am 25 Jan. 2023
Bearbeitet: Bruno Luong am 28 Jan. 2023
Is there any implementation of Tsai and lenz's (Or any other) method for solving AX=XB for hand- Eye Calibration?

Antworten (3)

the cyclist
the cyclist am 25 Jan. 2023
This is a special case of the Sylvester equation.
Looks like the sylvester function will be helpful for you.
You might also be interested in this blog post on the topic by Cleve Moler.
  1 Kommentar
SATISH SONWANE
SATISH SONWANE am 28 Jan. 2023
Sorry. That didn't help.

Melden Sie sich an, um zu kommentieren.


Torsten
Torsten am 28 Jan. 2023
Bearbeitet: Torsten am 28 Jan. 2023
dim = 4;
X = sym('X',[dim dim]);
A = rand(dim);
B = A.';
[M, ~] = equationsToMatrix(A*X==X*B)
if rank(M) < size(A,1)^2
N = null(M);
for i = 1:size(N,2)
S{i} = reshape(N(:,i),size(X));
S{i}
A*S{i}-S{i}*B
end
end

Matt J
Matt J am 28 Jan. 2023
Bearbeitet: Matt J am 28 Jan. 2023
[ma,na]=size(A);
[mb,nb]=size(B);
%size(X)=[na,mb]
X=null( kron(speye(mb),A) - kron(B.',speye(na)) );
X=reshape(X,na,mb,[]);
  2 Kommentare
the cyclist
the cyclist am 28 Jan. 2023
I couldn't get this method to work. Am I overlooking something dumb?
rng default
A = rand(5);
B = rand(5);
[ma,na]=size(A);
[mb,nb]=size(B);
X=null( kron(speye(mb),A) - kron(B.',speye(na)) );
Error using svd
SVD does not support sparse matrices. Use SVDS to compute a subset of the singular values and vectors of a sparse matrix.

Error in null (line 75)
[V, s] = svd(A','vector');
X=reshape(X,na,mb,[]);
Bruno Luong
Bruno Luong am 28 Jan. 2023
Bearbeitet: Bruno Luong am 28 Jan. 2023
null can only work wth full matrix
rng default
A = rand(5);
XX = rand(5);
B = XX\(A*XX);
[ma,na]=size(A);
[mb,nb]=size(B);
K=null( kron(eye(mb),A) - kron(B.',eye(na)));
R = rand(size(K,2),1); % Any random vector with this size will do the job
X = reshape(K*R,[na,mb])
X = 5×5
0.1100 0.1626 0.0772 -0.0458 0.0810 -0.0536 -0.3884 0.0510 0.0552 -0.0602 0.1937 -0.1993 0.3240 0.3508 -0.0352 -0.1165 0.4388 -0.3413 -0.3089 0.1851 0.0500 0.0277 0.0913 0.1389 0.0450
norm(A*X-X*B)
ans = 7.4501e-16

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by