Inverse Power Method Doesnt Work

2 Ansichten (letzte 30 Tage)
Filippos Georgios Sarakis
Filippos Georgios Sarakis am 19 Jan. 2023
Beantwortet: Harsh Sanghai am 21 Mär. 2023
I try to find the smallest eigenvalue of a matrix using the Power Method to approximate its conditional number but it doesnt work. I can find the biggest eigenvector but not the smallest.
function [dk1,dkinf]=fun(x)
n = numel(x)-1;
psi = @(x)exp(-3*x.^2);
L = zeros(n+1);
for i = 1:n+1
L(i,:) = psi(x(1:n+1)-x(i));
end
format long
L
antL=inv(L)
A=max(sum(abs(L)))
B=max(sum(abs(antL)))
dk1=A*B
C=max(sum(abs(L')))
D=max(sum(abs(antL')))
dkinf=C*D
xold = 0.5*ones(n+1,1);
t=7
for i = 1:t
xnew=L*xold;
X=xnew/norm(xnew,2);
xold=xnew;
end
trX=transpose(X);
lmax=(trX*L*X)/(trX*X)
max(eig(L))
xold3 = 0.5*ones(n+1,1);
s=4
for i = 1:s
xnew2=L\xold3;
antX=xnew2/norm(xnew2,2);
xold3=xnew2;
end
trantX=transpose(antX);
antlmax=(trantX*(L\antX))/(trantX*antX)
lmin=1/antlmax
CN=lmax/lmin
end

Antworten (1)

Harsh Sanghai
Harsh Sanghai am 21 Mär. 2023
Hi,
The Power Method is typically used to find the largest eigenvalue and its associated eigenvector of a matrix. To find the smallest eigenvalue, you can use the Inverse Power Method, which is a variant of the Power Method.
Here is the modified code that implements the Inverse Power Method to find the smallest eigenvalue:
function [dk1, dkinf, CN] = fun(x)
n = numel(x)-1;
psi = @(x)exp(-3*x.^2);
L = zeros(n+1);
for i = 1:n+1
L(i,:) = psi(x(1:n+1)-x(i));
end
antL = inv(L);
A = max(sum(abs(L)));
B = max(sum(abs(antL)));
dk1 = A*B;
C = max(sum(abs(L')));
D = max(sum(abs(antL')));
dkinf = C*D;
% Inverse Power Method to find the smallest eigenvalue
xold = ones(n+1, 1);
mu = 0; % initial guess for eigenvalue
tol = 1e-10; % tolerance for convergence
maxiter = 100; % maximum number of iterations
for k = 1:maxiter
xnew = L\xold;
mu_new = (xnew'*xold)/(xold'*xold);
if abs(mu_new - mu) < tol
break;
end
xold = xnew;
mu = mu_new;
end
lmin = mu;
CN = lmax/lmin;
end

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by