How can I calculate unknown roots from a matrix

2 Ansichten (letzte 30 Tage)
Merve Ala
Merve Ala am 16 Jan. 2023
Kommentiert: Matt J am 16 Jan. 2023
I have two basic matrix, and I try to calculate 'lamda' value according to eigen value problem. I must calculate four different 'lamda' values. My code is in below and the results are so complex. I wanna basic results. What can I do?
A = [ 12 22 33 44 ;
49 56 68 79 ;
10 11 12 13 ;
46 58 64 79 ;]
B = [15 16 17 18 ;
44 58 67 71 ;
10 11 12 13;
15 16 17 18 ;]
D=zeros(4,4);
syms lamda
I = eye (4);
D = inv(A)*B-(lamda*I)
solve(det(D) == 0,lamda)
the results are
ans =
root(z^4 + (4855*z^3)/3169 - (1700140947479703230035*z^2)/706682405897585557504 - (713595360956524300343*z)/5653459247180684460032 + 8158275/2826729623590342230016, z, 1)
root(z^4 + (4855*z^3)/3169 - (1700140947479703230035*z^2)/706682405897585557504 - (713595360956524300343*z)/5653459247180684460032 + 8158275/2826729623590342230016, z, 2)
root(z^4 + (4855*z^3)/3169 - (1700140947479703230035*z^2)/706682405897585557504 - (713595360956524300343*z)/5653459247180684460032 + 8158275/2826729623590342230016, z, 3)
root(z^4 + (4855*z^3)/3169 - (1700140947479703230035*z^2)/706682405897585557504 - (713595360956524300343*z)/5653459247180684460032 + 8158275/2826729623590342230016, z, 4)

Akzeptierte Antwort

Matt J
Matt J am 16 Jan. 2023
Bearbeitet: Matt J am 16 Jan. 2023
A = [ 12 22 33 44 ;
49 56 68 79 ;
10 11 12 13 ;
46 58 64 79 ];
B = [15 16 17 18 ;
44 58 67 71 ;
10 11 12 13;
15 16 17 18 ];
lambda = eig(B,A)
lambda = 4×1
-2.4812 1.0000 -0.0000 -0.0509
  2 Kommentare
Merve Ala
Merve Ala am 16 Jan. 2023
Is it eig(A,B)=?
Matt J
Matt J am 16 Jan. 2023
I don't see why it would be. Your characteristic equation was,
B-lamda*A=0

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by