Unable to meet the tolerance without using more than 1666 mesh points.

3 Ansichten (letzte 30 Tage)
I have a coupled non-linear differential equations
(d^2 f)/(dy^2 )+m2*g2*dB/dy-2*i*R2*g1*f - g3*G1*y - R4*g1 = 0
(d^2 B)/(dy^2 )+t4/(1-i*H1)*df/dy=0
(d^2 T)/(dy^2 )-1/2*g4*G1*PR*(f+ ̅f)+ER*PR*[g5*(df/dy*d ̅f/dy)+g6*m2*(dB/dy*dB̅/dy)]=0, where ̅f is conjugate of f and B̅ is conjugate of B
Boundary conditions are
f=0 at y=0
f=C1 at y=1
And
dB/dy-(t4/(P1* (1-i*H1 ) ))* B=0 at y=0
dB/dy+(t4/(P2 (1-i*H1 ) ))* B=0 at y=1
and
T=0 at y=0
T=1 at y=1
I already got the solutions and graph for the first two equations with the help received from Torsen, but now i have extended the problem for three equations, when i run the program, i get an error "Unable to meet the tolerance without using more than 1666 mesh points", I tried using NMax but could not get the solution
Matlab programs
close all
clc
p=0.1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=0;
R3=4420;
H1=0.25;
K1=3;
R4=1;
PR=7.0;
ER= 2.0;
cf=4179;
cs=0.56;
K2=0.613;
K3=7.2;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
t5=(1-p)+(p.*R3.*cs)./(R1.*cf);
t6=(1+2.*(K2./K3)+2.*p.*(1-K2./K3))./(1+2.*(K2./K3)-p.*(1-K2./K3));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
g4=t5./t6;
g5=t1./t6;
g6=1./(t4.*t6);
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(4);
y(5);
y(6);
-m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
1/2.*g4.*G1.*PR.*(y(1)+conj(y(1)))-ER.*PR.*(g5.*(y(4).*conj(y(4))+g6.*m2.*(y(5).*conj(y(5)))))];
BC = @(ya,yb)[ya(1)-0;yb(1)-C1;ya(3)-0;yb(3)-1.0;ya(5)-m1.*ya(2);yb(5)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
% options = bvpset('AbsTol',1e-6,'RelTol',1e-4,'stats','on','Nmax',1000);
options = bvpset('AbsTol',1e-6);
% options = bvpset('RelTol',1e-4);
%options = bvpset('stats','on');
%options = bvpset('Nmax',1000);
U1 = bvp4c(dydx,BC,solinit,options);
hold on
plot(U1.x,real(U1.y(3,:)),'b','linewidth',1.5)
plot(U1.x,imag(U1.y(3,:)),'r','linewidth',1.5)
  5 Kommentare
Syed Mohiuddin
Syed Mohiuddin am 10 Jan. 2023
I use R2016b, for the previous question also i did not get the option to accept the answer, please provide the option for the previous question too. Thank you

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 10 Jan. 2023
Verschoben: Torsten am 10 Jan. 2023
Seems to work (see above).

Weitere Antworten (0)

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Produkte


Version

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by