How to apply Silhouette Score for optimal K in MATLAB

68 Ansichten (letzte 30 Tage)
Med Future
Med Future am 10 Jan. 2023
Kommentiert: Walter Roberson am 12 Jan. 2023
Hello,I Hope you are doing well. I have the following dataset i want to apply Silhouette Score from scrath.
I have the Python Script for that. Can anybody help me in implmenting it into MATLAB
The following code is in Python
costs = []
for p in range(10):
kmeans = K_Means(k=p,data = data[0],centeriod_init='random')
centroids, cluster_assignments, iters, orig_centroids = kmeans.fit(data[0])
X = data[0]
dist_ji = 0
a = 0
s=0
for i in range(len(data[0])):
for j in range(p):
dist_ji += euclidean_dist(centroids[j,:],X[i,:])
#print(dist_ji)
dist_ji -= sum(cluster_assignments[:,1])/len(data[0])
a = sum(cluster_assignments[:,1])/(len(data[0])-1)
s = (dist_ji - a)/max(dist_ji,a)
s = np.array(s)
s = s.item()
costs.append(s)
x = np.arange(10)
plt.plot(x,costs)
plt.title("Silhoutte Score")
plt.xlabel("K -->")
plt.ylabel("Dispersion")

Antworten (1)

Walter Roberson
Walter Roberson am 11 Jan. 2023
I do not know enough python to know how to convert this code.
I suspect: call kmeans() with p as the number of centroids, getting back indices and centroid locations. Then take
nearest_center = CentroidLocations(CentroidIdx,:);
a = mean((data - nearest_center).^2,2);
or something like that.
  4 Kommentare
Med Future
Med Future am 11 Jan. 2023
@Walter Roberson CentroidLocations is not any command in MATLAB
Walter Roberson
Walter Roberson am 12 Jan. 2023
N = 10;
s = zeros(size(data,1), N);
for p = 1 : N
[CentroidIdx, CentroidLocations] = kmeans(data, p); %random initialization is default
nearest_center = CentroidLocations(CentroidIdx,:);
dist_ji = sum((data - nearest_center).^2,2);
a = mean(dist_ji);
s(:,p) = (dist_ji - a)./max(dist_ji,a);
end
plot(s)

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Call Python from MATLAB finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by