where is the error

7 Ansichten (letzte 30 Tage)
Ahmad
Ahmad am 30 Dez. 2022
Kommentiert: Star Strider am 31 Dez. 2022
I want to know where is the error please
% Symbolic
syms x(t) y(t) z(t) p k a1 a2 b2 c d sigma beta
Eqn1 = diff(x(t), t) == p*x*(1-y/k)-a1*x*y;
Eqn2 = diff(y(t), t) == c*a1*x*y-d*y-a2*y*z/(y+a2);
Eqn3 = diff(z(t), t) == sigma*z^2-beta*z^2/(y+b2);
Sols = dsolve([Eqn1, Eqn2, Eqn3])
Warning: Unable to find symbolic solution.
S= dsolve([Eqn1, Eqn2, Eqn3])
Sols
[xSol(t),ySol(t),zSol(t)] = dsolve(Eqns)
(2) Numerical Solution - see DOC:
%% Numerical solutions
ICs = [pi; pi/2; 2]; % Initial Conditions
[time, Sol]=ode45(@(t, xyz)FCN(t, xyz), [0, 10], ICs);
plot(time, Sol(:,1), 'r',time, Sol(:,2), 'g', time, Sol(:,3), 'b', 'linewidth', 2)
legend('x(t)', 'y(t)', 'z(t)'); grid on
title('Numerical Solutions')
xlabel('$t$', 'interpreter', 'latex')
ylabel('$x(t), \ y(t), \ z(t)$', 'interpreter', 'latex')
function dxyz = FCN(t, xyz)
p =.1;
k =.2;
a1 =.3;
a2 =.4;
b2 =.5;
c =.6;
d =.7;
sigma =.8;
beta =.9;
dxyz=[p*xyz(1)*(1-xyz(2)/k)-a1*xyz(1).*xyz(2);
c*a1*xyz(1).*xyz(2)-d*xyz(2)-a2*xyz(2).*xyz(3)./(xyz(2)+a2);
sigma*xyz(3).^2-(beta*xyz(3).^2)./(xyz(2)+b2)];
end
Unrecognized function or variable 'There'.
>>

Akzeptierte Antwort

Star Strider
Star Strider am 30 Dez. 2022
The system is nonlinear, and not one of the few nonlinear systems that haave analytic solutions.
After commenting-out the dsolve call, it appears to provide a solution —
% Symbolic
syms x(t) y(t) z(t) p k a1 a2 b2 c d sigma beta
Eqn1 = diff(x(t), t) == p*x*(1-y/k)-a1*x*y;
Eqn2 = diff(y(t), t) == c*a1*x*y-d*y-a2*y*z/(y+a2);
Eqn3 = diff(z(t), t) == sigma*z^2-beta*z^2/(y+b2);
Sols = dsolve([Eqn1, Eqn2, Eqn3])
Warning: Unable to find symbolic solution.
Sols = [ empty sym ]
% Warning: Unable to find symbolic solution.
S= dsolve([Eqn1, Eqn2, Eqn3])
Warning: Unable to find symbolic solution.
S = [ empty sym ]
Sols
Sols = [ empty sym ]
% [xSol(t),ySol(t),zSol(t)] = dsolve(Eqns)
% (2) Numerical Solution - see DOC:
%% Numerical solutions
ICs = [pi; pi/2; 2]; % Initial Conditions
[time, Sol]=ode45(@(t, xyz)FCN(t, xyz), [0, 10], ICs);
plot(time, Sol(:,1), 'r',time, Sol(:,2), 'g', time, Sol(:,3), 'b', 'linewidth', 2)
legend('x(t)', 'y(t)', 'z(t)'); grid on
title('Numerical Solutions')
xlabel('$t$', 'interpreter', 'latex')
ylabel('$x(t), \ y(t), \ z(t)$', 'interpreter', 'latex')
function dxyz = FCN(t, xyz)
p =.1;
k =.2;
a1 =.3;
a2 =.4;
b2 =.5;
c =.6;
d =.7;
sigma =.8;
beta =.9;
dxyz=[p*xyz(1)*(1-xyz(2)/k)-a1*xyz(1).*xyz(2);
c*a1*xyz(1).*xyz(2)-d*xyz(2)-a2*xyz(2).*xyz(3)./(xyz(2)+a2);
sigma*xyz(3).^2-(beta*xyz(3).^2)./(xyz(2)+b2)];
end
.
  12 Kommentare
Ahmad
Ahmad am 31 Dez. 2022
Happy new year to you, i hope that both of you will have a great 2023 and being happy with full of peaceful to both of you. also we wish that peace spread over all the worlds.
Star Strider
Star Strider am 31 Dez. 2022
Thank you!
And to you (and the world) as well!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by