Solving system of ODEs with ode45

2 Ansichten (letzte 30 Tage)
shir levi
shir levi am 24 Dez. 2022
Kommentiert: Sam Chak am 25 Dez. 2022
i have the following equetions system
and and the maching valuse
i tried to solve the system with the following code but i dont get the right resultes which i know:
ephsilon values [1.94 2.65 3.42] for the x1/h vec [7.5 9.5 11]
k values [0.2680 0.3585 0.444] for the same x1/h vec.
the code i wrote
Y=zeros(1,2);
Uc=12.4; %m/s
S=46.8;% 1/s
k_75=0.268 ; %m2/s2;
e_75=1.94; %m2/s3
Cu = 0.09;
C1= 1.44;
C2=1.92;
x1_h=7.5;
h = 0.3048;%m
xspan=[7.5 9.5 11];
Y0=[k_75 e_75 ];
f = @(t,Y) [(Cu*((Y(1))^2)/(Y(2))*(S^2)-Y(2))/(Uc/h); (Cu*C1*(Y(1))*(S^2)-C2*((Y(2))^2)/(Y(1)))/(Uc/h)];
[x0,val] = ode45(f , xspan, Y0);
figure (1)
plot(x0, val(:,1))
figure (2)
plot(x0, val(:,2))
what wrong with it ? thanks for the help
  1 Kommentar
Walter Roberson
Walter Roberson am 25 Dez. 2022
What is the evidence that those are not correct output graphs?

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Sam Chak
Sam Chak am 24 Dez. 2022
Bearbeitet: Sam Chak am 24 Dez. 2022
Edit: Previously I've got the same results like you did. However, after thinking about it, those 2 sets of 3 values for k and ϵ are probably initial conditions. So, I modified the code to include a for loop.
Also, in the 3rd figure, the system is shown to be inherently unstable, and there is no equilibrium point.
% parameters
Uc = 12.4; % m/s
S = 46.8; % 1/s
k = [0.2680 0.3585 0.444]; % m2/s2 ic for k
epsil = [1.9400 2.6500 3.420]; % m2/s3 ic for epsil
Cu = 0.09;
C1 = 1.44;
C2 = 1.92;
x1_h = [7.5 9.5 11];
h = 0.3048; % m
tstart = x1_h*h/Uc;
tfinal = 2*tstart;
for j = 1:length(x1_h)
% setting conditions
f = @(t, Y) [Cu*(Y(1)^2)/Y(2)*S^2 - Y(2); Cu*C1*Y(1)*S^2 - C2*(Y(2)^2)/Y(1)];
tspan = [tstart(j) tfinal(j)];
Y0 = [k(j) epsil(j)];
[t, Y] = ode45(f, tspan, Y0);
% plotting results
figure(1)
plot(t*Uc/h, Y(:,1)), hold on, grid on,
xlabel('x_{1}/h'), ylabel('k'), title('k responses')
figure(2)
plot(t*Uc/h, Y(:,2)), hold on, grid on,
xlabel('x_{1}/h'), ylabel('\epsilon'), title('\epsilon responses')
end
hold off
[x, y] = meshgrid(-11:2:11);
u = Cu*(x.^2)./y*S^2 - y;
v = Cu*C1*x*S^2 - C2*(y.^2)./x;
figure(3)
l = streamslice(x, y, u, v);
axis tight
xlabel('k')
ylabel('\epsilon')

shir levi
shir levi am 24 Dez. 2022
thak you for answaring
but those arnt the initial conditions
its the valuse i was supposed to get in my results
  1 Kommentar
Sam Chak
Sam Chak am 25 Dez. 2022
But you used these values and in the initial condition.
So, I'm confused.
Perhaps, if you tell us more info about the 2 sets of 3 values, it will help clarifying the matter.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by