Newton's method returns NaN when solving
22 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to solve a 7D system of equations using the Newton's method. However, my code returns NaN after running. I have checked through my equations and I do not have the case of 0/0. I have tried to change initial guesses but to no success. I cannot figure out why I get such values. Can someone please give me a third eye or suggest a better method that I can use? Thanks in anticipation. Below is my code:
clc; close all; clear
syms x1 x2 x3 x4 x5 x6 x7 x8
f1(x1, x2, x3, x4, x5, x6, x7) = (1.*x2.*(x3+x6) + x1.*x7.*x4)./(2.*x1.*x7 + 2.*x2) + x5./2;
f2(x1, x2, x3, x4, x5, x6, x7) = (2.*x2.*(x3+x6) + x1.*x7.*x4)./(2.*x1.*x7 + 4.*x2) + x5./2;
f3(x1, x2, x3, x4, x5, x6, x7) = (3.*x2.*(x3+x6) + x1.*x7.*x4)./(2.*x1.*x7 + 6.*x2) + x5./2;
f4(x1, x2, x3, x4, x5, x6, x7) = (4.*x2.*(x3+x6) + x1.*x7.*x4)./(2.*x1.*x7 + 8.*x2) + x5./2;
f5(x1, x2, x3, x4, x5, x6, x7) = sqrt( (1.*x2.*(x3+x6).*x5)./(x1.*x7 + 1.*x2) );
f6(x1, x2, x3, x4, x5, x6, x7) = sqrt( (2.*x2.*(x3+x6).*x5)./(x1.*x7 + 2.*x2) );
f7(x1, x2, x3, x4, x5, x6, x7) = sqrt( (3.*x2.*(x3+x6).*x5)./(x1.*x7 + 3.*x2) );
x=[8.0; 8.0; 4.0; 4.0; 3.0; 2.5; 1.6];
e=10^(-8);
n=20;
f1x1(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x1);
f1x2(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x2);
f1x3(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x3);
f1x4(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x4);
f1x5(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x5);
f1x6(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x6);
f1x7(x1,x2,x3,x4,x5,x6,x7) = diff(f1,x7);
f2x1(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x1);
f2x2(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x2);
f2x3(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x3);
f2x4(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x4);
f2x5(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x5);
f2x6(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x6);
f2x7(x1,x2,x3,x4,x5,x6,x7) = diff(f2,x7);
f3x1(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x1);
f3x2(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x2);
f3x3(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x3);
f3x4(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x4);
f3x5(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x5);
f3x6(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x6);
f3x7(x1,x2,x3,x4,x5,x6,x7) = diff(f3,x7);
f4x1(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x1);
f4x2(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x2);
f4x3(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x3);
f4x4(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x4);
f4x5(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x5);
f4x6(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x6);
f4x7(x1,x2,x3,x4,x5,x6,x7) = diff(f4,x7);
f5x1(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x1);
f5x2(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x2);
f5x3(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x3);
f5x4(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x4);
f5x5(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x5);
f5x6(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x6);
f5x7(x1,x2,x3,x4,x5,x6,x7) = diff(f5,x7);
f6x1(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x1);
f6x2(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x2);
f6x3(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x3);
f6x4(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x4);
f6x5(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x5);
f6x6(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x6);
f6x7(x1,x2,x3,x4,x5,x6,x7) = diff(f6,x7);
f7x1(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x1);
f7x2(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x2);
f7x3(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x3);
f7x4(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x4);
f7x5(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x5);
f7x6(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x6);
f7x7(x1,x2,x3,x4,x5,x6,x7) = diff(f7,x7);
f11=matlabFunction(f1);
f22=matlabFunction(f2);
f33=matlabFunction(f3);
f44=matlabFunction(f4);
f55=matlabFunction(f5);
f66=matlabFunction(f6);
f77=matlabFunction(f7);
f1x11=matlabFunction(f1x1);
f1x22=matlabFunction(f1x2);
f1x33=matlabFunction(f1x3);
f1x44=matlabFunction(f1x4);
f1x55=matlabFunction(f1x5);
f1x66=matlabFunction(f1x6);
f1x77=matlabFunction(f1x7);
f2x11=matlabFunction(f2x1);
f2x22=matlabFunction(f2x2);
f2x33=matlabFunction(f2x3);
f2x44=matlabFunction(f2x4);
f2x55=matlabFunction(f2x5);
f2x66=matlabFunction(f2x6);
f2x77=matlabFunction(f2x7);
f3x11=matlabFunction(f3x1);
f3x22=matlabFunction(f3x2);
f3x33=matlabFunction(f3x3);
f3x44=matlabFunction(f3x4);
f3x55=matlabFunction(f3x5);
f3x66=matlabFunction(f3x6);
f3x77=matlabFunction(f3x7);
f4x11=matlabFunction(f4x1);
f4x22=matlabFunction(f4x2);
f4x33=matlabFunction(f4x3);
f4x44=matlabFunction(f4x4);
f4x55=matlabFunction(f4x5);
f4x66=matlabFunction(f4x6);
f4x77=matlabFunction(f4x7);
f5x11=matlabFunction(f5x1);
f5x22=matlabFunction(f5x2);
f5x33=matlabFunction(f5x3);
f5x44=matlabFunction(f5x4);
f5x55=matlabFunction(f5x5);
f5x66=matlabFunction(f5x6);
f5x77=matlabFunction(f5x7);
f6x11=matlabFunction(f6x1);
f6x22=matlabFunction(f6x2);
f6x33=matlabFunction(f6x3);
f6x44=matlabFunction(f6x4);
f6x55=matlabFunction(f6x5);
f6x66=matlabFunction(f6x6);
f6x77=matlabFunction(f6x7);
f7x11=matlabFunction(f7x1);
f7x22=matlabFunction(f7x2);
f7x33=matlabFunction(f7x3);
f7x44=matlabFunction(f7x4);
f7x55=matlabFunction(f7x5);
f7x66=matlabFunction(f7x6);
f7x77=matlabFunction(f7x7);
for i=1:n
F=[f11(x(1),x(2),x(3),x(4),x(5),x(6),x(7));f22(x(1),x(2),x(3),x(4),x(5),x(6),x(7));...
f33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)); f44(x(1),x(2),x(3),x(4),x(5),x(6),x(7));...
f55(x(1),x(2),x(3),x(4),x(5),x(6),x(7));f66(x(1),x(2),x(3),x(4),x(5),x(6),x(7));...
f77(x(1),x(2),x(3),x(4),x(5),x(6),x(7))];
J=[f1x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f1x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f1x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f1x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f1x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f1x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f1x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f2x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f2x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f2x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f2x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f2x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f2x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f2x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f3x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f3x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f3x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f3x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f3x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f3x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f3x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f4x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f4x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f4x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f4x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f4x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f4x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f4x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f5x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f5x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f5x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f5x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f5x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f5x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f5x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f6x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f6x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f6x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f6x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f6x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f6x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f6x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7));
f7x11(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f7x22(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f7x33(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f7x44(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f7x55(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),f7x66(x(1),x(2),x(3),x(4),x(5),x(6),x(7)),...
f7x77(x(1),x(2),x(3),x(4),x(5),x(6),x(7))];
y=-J\F;
x=x+y
end
0 Kommentare
Akzeptierte Antwort
Torsten
am 21 Dez. 2022
Bearbeitet: Torsten
am 22 Dez. 2022
If you rename y(1)= x(3)+x(6) and y(2)=x(1)*x(7) in your equations for f1,...,f7, you will see that you have 7 equations for 5 unknowns (x(2),x(4),x(5),y(1),y(2)). This doesn't sound good for solvability of the system, especially for the regularity of the Jacobian.
So remove two of the equations f1,...,f7 and replace x(3)+x(6) by y(1) and x(1)*x(7) by y(2).
One possible solution for your equations is
x(2) = 0, y(1) = const1, y(2) = const2 (~=0), x(4) = const3, x(5) = -const3
where const1, const2 ~=0 and const3 are arbitrary constants.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!