Circular Restricted Three body problem in a No Inertial system

8 Ansichten (letzte 30 Tage)
Kevin Valencia
Kevin Valencia am 20 Dez. 2022
Beantwortet: Vinayak am 16 Jan. 2024
Hi!
I am trying to programming de CRTBP, but i am trying to simulate in the No intertial system but my code apparently gives me the solution of the Inertial system, i am trying to find the solution in the No inertial system, does anyone has an advice?
Apparently this is the solution for the Inertial system cause I obtained a spiral, i am using this motion equations for this:
Here is my Matlab code:
clc;
clear all;
% Renombrar variables de las ecuaciones de movimientos
% x=x(1); x'=x(2); y=x(3); y'=x(4)
% x''=x*ome^2+2*ome*y'-G*m1*(x+mu2*r12)/(((x-r1)^2+y^2)^1.5)-G*m2*(x-mu2*r12)/(((x-r2)^2+y^2)^1.5)
% y''=y*ome^2-2*ome*x'-G*m1*y/(((x-r1)^2+y^2)^1.5)-G*m2*y/(((x-r2)^2+y^2)^1.5)
% x=x(1) , x1'=x(2) . y=x(3) , x3'=x(4)
% r es la posición de la masa "m" r(x,y)
% r1 es la posición de la masa "m1" r(x1,0)
% r1-r=(x1-x,0) la diferencia de los vectores
% Condiciones iniciales
x0 = [35,0]; %AU
y0= [0,35]; %AU
%Constantes
G = 1;
m1 =5.974e24;
m2 = 7.348e22;
r1= -21.3; %AU
r2= 33.7; %AU
r12=r2-r1;
mu1=((m1)/(m1+m2));
mu2=((m2)/(m1+m2));
%ome=sqrt((m1+m2)/(-r1+r2)^3); %Velocidad angular, la ley de Kepler
ome=1;
[t,x]=ode45(@crtbp,[0 100],[35;0;0;0.03]);
figure
plot3(t,x(:,1),x(:,3));
figure
hold on;
plot(t,x(:,1),'r');
plot(t,x(:,3),'b');
pause(0.01);
figure
hold on
plot(t,x)
pause(0.01);
function dxdt=crtbp(t,x)
G=1;
m1 =5.974e24;
m2 = 7.348e22;
r1=-21.3;
r2=33.7;
r12=r2-r1;
mu1=((m1)/(m1+m2));
mu2=((m2)/(m1+m2));
% ome=sqrt((m1+m2)/(-r1+r2)^3);
ome=1;
% dxdt=[x(2); x(1)*ome^2+2*ome*x(4)-G*m1*(x(1)+r1)/(((x(1)-r1)^2+x(3)^2)^1.5)-G*m2*(x(1)-r2)/(((x(1)-r2)^2+x(3)^2)^1.5); x(4); x(3)*ome^2-2*ome*x(2)-G*m1*1*x(3)/(((x(1)-r1)^2+x(3)^2)^1.5)-G*m2*x(3)/(((x(1)-r2)^2+x(3)^2)^1.5)];
dxdt=[x(2); x(1)*ome^2+2*ome*x(4)-G*m1*(x(1)+mu2*r12)/(((x(1)-r1)^2+x(3)^2)^1.5)-G*m2*(x(1)-mu1*r12)/(((x(1)-r2)^2+x(3)^2)^1.5); x(4); x(3)*ome^2-2*ome*x(2)-G*m1*1*x(3)/(((x(1)-r1)^2+x(3)^2)^1.5)-G*m2*x(3)/(((x(1)-r2)^2+x(3)^2)^1.5)];
end

Antworten (1)

Vinayak
Vinayak am 16 Jan. 2024
Hi Kevin,
Upon analysing the code, and the equations you wish to recreate, it is my understanding that for a non-inertial frame you need to consider the centrifugal force and Coriolis force.
Coriolis Term:
For the x-equation: +2 * omega * x(4)
For the y-equation: -2 * omega * x(2)
Centrifugal Term:
For the x-equation: -omega^2 * x(1)
For the y-equation: -omega^2 * x(3)
To achieve the resulting cylindrical spirals for the non-inertial frame, please modify the function to calculate ‘crtbp’ as shown below,
function dxdt = crtbp(t, x)
% Define constants for the two primary bodies and the rotating frame
G = 1;
m1 = 5.974e24; % Mass of the first primary body
m2 = 7.348e22; % Mass of the second primary body
r1 = -21.3; % Position of the first primary body on the x-axis
r2 = 33.7; % Position of the second primary body on the x-axis
r12 = r2 - r1; % Distance between the two primary bodies
mu1 = m1 / (m1 + m2); % Gravitational parameter for the first primary body
mu2 = m2 / (m1 + m2); % Gravitational parameter for the second primary body
ome = 1; % Angular velocity of the rotating frame
% Initialize the derivative vector
dxdt = zeros(4, 1);
% Equations of motion in the rotating frame:
% dxdt(1) represents the derivative of the x position, which is the x velocity.
dxdt(1) = x(2);
% dxdt(2) represents the derivative of the x velocity, including centrifugal force,
% Coriolis force, and the gravitational attractions from the two primary bodies.
dxdt(2) = x(1) * ome^2 + 2 * ome * x(4) - G * m1 * (x(1) + mu2 * r12) / (((x(1) - r1)^2 + x(3)^2)^1.5) - G * m2 * (x(1) - mu1 * r12) / (((x(1) - r2)^2 + x(3)^2)^1.5);
% dxdt(3) represents the derivative of the y position, which is the y velocity.
dxdt(3) = x(4);
% dxdt(4) represents the derivative of the y velocity, including centrifugal force,
% Coriolis force, and the gravitational attractions from the two primary bodies.
dxdt(4) = x(3) * ome^2 - 2 * ome * x(2) - G * m1 * x(3) / (((x(1) - r1)^2 + x(3)^2)^1.5) - G * m2 * x(3) / (((x(1) - r2)^2 + x(3)^2)^1.5);
end
Hope this helps!

Kategorien

Mehr zu Gravitation, Cosmology & Astrophysics finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by