Solve a nonlinear equation with constrains
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Miraboreasu
am 15 Dez. 2022
Bearbeitet: Torsten
am 16 Dez. 2022
Hello,
clear
p0=1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 5e6;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a*t) - exp(-b*t))/(exp(-a*t0) - exp(-b*t0)))-c;
r=1.5;
roots = fzero(func,r)
my equation is the func.
where a and b are,
1 Kommentar
Bora Eryilmaz
am 15 Dez. 2022
Bearbeitet: Bora Eryilmaz
am 15 Dez. 2022
Your function "p(t)" (func in your code) is not a function of time since you are assigning a fixed scalar value to "t" in your code. So, func() is a function of r, with a fixed "t". So what you are really solving here is p(r) = 0 given fixed values for t, t0, a, b, c.
You will need to reformulate your problem.
Akzeptierte Antwort
Torsten
am 15 Dez. 2022
p0 = 1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 7.5e8;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a(r)*t) - exp(-b(r)*t))./(exp(-a(r)*t0) - exp(-b(r)*t0))) - c;
r = 0.001:0.1:10;
plot(r,func(r))
root1 = fzero(func,[0.001 0.75])
root2 = fzero(func,[1.1 2.5])
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!