Solve a nonlinear equation with constrains

1 Ansicht (letzte 30 Tage)
Miraboreasu
Miraboreasu am 15 Dez. 2022
Bearbeitet: Torsten am 16 Dez. 2022
Hello,
clear
p0=1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 5e6;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a*t) - exp(-b*t))/(exp(-a*t0) - exp(-b*t0)))-c;
r=1.5;
roots = fzero(func,r)
my equation is the func.
where a and b are,
  1 Kommentar
Bora Eryilmaz
Bora Eryilmaz am 15 Dez. 2022
Bearbeitet: Bora Eryilmaz am 15 Dez. 2022
Your function "p(t)" (func in your code) is not a function of time since you are assigning a fixed scalar value to "t" in your code. So, func() is a function of r, with a fixed "t". So what you are really solving here is p(r) = 0 given fixed values for t, t0, a, b, c.
You will need to reformulate your problem.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 15 Dez. 2022
p0 = 1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 7.5e8;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a(r)*t) - exp(-b(r)*t))./(exp(-a(r)*t0) - exp(-b(r)*t0))) - c;
r = 0.001:0.1:10;
plot(r,func(r))
root1 = fzero(func,[0.001 0.75])
root1 = 0.5000
root2 = fzero(func,[1.1 2.5])
root2 = 2.0000
  2 Kommentare
Miraboreasu
Miraboreasu am 15 Dez. 2022
Thanks, but if I keep c=5e6, it won't work
Torsten
Torsten am 15 Dez. 2022
Bearbeitet: Torsten am 16 Dez. 2022
Yes, because no roots exist. Plot the function, and you will see that it does not cross the r-axis.
Note for functions that only depend on one variable: First plot, then solve.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by