- Majority Voting
Stacking two semi suprvised models
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have two trained semisuprvised algorithms ( graph based and SVM). How to combine the models together ?
0 Kommentare
Antworten (1)
Rohit
am 21 Mär. 2023
Bearbeitet: Rohit
am 21 Mär. 2023
You can combine two trained semi-supervised algorithms using various methods. Here are some examples of how to implement these methods:
graph_output = graph_based_algorithm(test_data);
svm_output = svm_algorithm(test_data);
% Combine the outputs using majority voting
ensemble_output = mode([graph_output, svm_output], 2);
2. Model stacking
graph_features = graph_based_algorithm(data);
svm_output = svm_algorithm(graph_features);
Note that these are just examples, and the exact implementation will depend on the specific characteristics of your algorithms and data.
Similarly, you can experiment with different ensemble methods and see what works best for your use case.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!