Convolution example: inputA[64],InputB[64] and Output[128]

2 Ansichten (letzte 30 Tage)
AndyK
AndyK am 12 Dez. 2022
Beantwortet: Paul am 12 Dez. 2022
Hi all,
I need help to reproduce a convolution example presented here:
A[k] = FFT(a[n],N)
B[k] = FFT(b[n],N)
conv(a[n], b[n]) = IFFT(A[k] * B[k], N)
/* ----------------------------------------------------------------------
* Test input data for Floating point Convolution example for 32-blockSize
* Generated by the MATLAB randn() function
* ------------------------------------------------------------------- */
float32_t Ak[MAX_BLOCKSIZE]; /* Input A */
float32_t Bk[MAX_BLOCKSIZE]; /* Input B */
float32_t AxB[MAX_BLOCKSIZE * 2]; /* Output */
  1 Kommentar
Bruno Luong
Bruno Luong am 12 Dez. 2022
Bearbeitet: Bruno Luong am 12 Dez. 2022
None of the standard (MATLAB) shape produce output of length nA+nB where nA and nB are the lenghs of a and b respectively (64 in the thread subject) , but
  • 'full': nA+nB-1
  • 'same': nA
  • 'valid': nA-nB+1

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Paul
Paul am 12 Dez. 2022
Hi AndyK,
I'm going to assume that N = na + nb - 1, where na and nb are the lengths of a[n] and b[n] respectively. Under this assumption, the code would look like this. If we make N > na + nb - 1, like to the nextpower of 2, then ci should have N - (na + nb - 1) trailing zeros (to within rounding error)
rng(100)
na = 5;
nb = 5;
a = rand(1,na);
b = rand(1,nb);
c = conv(a,b);
N = na + nb - 1;
A = fft(a,N);
B = fft(b,N);
C = A.*B;
ci = ifft(C);
c
c = 1×9
0.0661 0.3983 0.6871 0.6916 1.2684 0.9189 0.3635 0.4865 0.0027
ci
ci = 1×9
0.0661 0.3983 0.6871 0.6916 1.2684 0.9189 0.3635 0.4865 0.0027

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by