Linear Least Squares Regression

3 Ansichten (letzte 30 Tage)
A
A am 9 Dez. 2022
Kommentiert: A am 10 Dez. 2022
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
N = length(x);
X = 'ones (N, 1), x';
Y = y;
J='inv(X.*X)*X*Y';
plot(x,y,'bs',[0, 5],J(1)+J(2)*[0, 5]+J(3)*[0, 5]);
hold on
how can i turn this graph into this graph

Antworten (1)

Bora Eryilmaz
Bora Eryilmaz am 9 Dez. 2022
Bearbeitet: Bora Eryilmaz am 9 Dez. 2022
% Original data
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
% Take tranposes.
x = x';
y = y';
% Find coefficients of a quadratic polynomial fit using linear least
% squares method.
C = [x.^2 x ones(size(x))] \ y
C = 3×1
2.1000 0.1538 -0.9000
% Get interpolated values on the polynomial.
xi = (-4:0.1:4)';
yi = C(1)*xi.^2 + C(2)*xi + C(3);
% Plot results.
plot(x,y, 'r*')
hold on
plot(xi,yi,'b-')

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by