I think potentially the reason the StackOverflow answer isn't working is because "overlapping" and "intersecting" are not the exact same thing
How to detect intersection of 3D rectangles that are rotated?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Michael Ferguson
am 6 Dez. 2022
Beantwortet: Jeffrey Clark
am 6 Dez. 2022
I'm working on a program that detects whether 2, 3D rectangles formed from 8 vertices each have volume that intersects between each other.
You can see in my plot the 8 vertices for each cube colored in red and blue, and by inspection they do not overlap.
However, for whatever reason they are incorrectly being treated as intersecting.
My code so far:
A = [1.06890761348719 0.228825482643729 6.59315554806020];
B = [1.44834644922958 2.01394485398281 6.59315554806020];
C = [1.88232205180130 1.92170049205148 7.14104345088730];
D = [1.50288321605895 0.136581120712592 7.14104345088730];
E = [1.38125706283994 0.162433557649978 7.24173471345524];
F = [1.76069589858218 1.94755292898839 7.24173471345524];
G = [1.32672029601073 2.03979729091965 6.69384681062850];
H = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A;B;C;D;E;F;G;H];
A = [2.13936288118597 1.24719872848015 6.52288724067451];
B = [1.62823228878787 2.82673229470654 5.76496624830234];
C = [1.90147565323319 3.17763404084656 6.31198638352805];
D = [2.41260624563123 1.59810047462036 7.06990737590013];
E = [2.27208449737978 1.58908440932306 7.14588335127981];
F = [1.76095390498189 3.16861797554878 6.38796235890797];
G = [1.48771054053678 2.81771622940902 5.84094222368265];
H = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A;B;C;D;E;F;G;H];
% check if there is intersection
c1 = max(P1(:,1)) > min(P2(:,1));
c2 = min(P1(:,1)) < max(P2(:,1));
c3 = max(P1(:,2)) > min(P2(:,2));
c4 = min(P1(:,2)) < max(P2(:,2));
c5 = max(P1(:,3)) > min(P2(:,3));
c6 = min(P1(:,3)) < max(P2(:,3));
[X,Y,Z] = deal(nan);
if c1 && c2 && c3 && c4 && c5 && c6
X(1) = max(min(P1(:,1)),min(P2(:,1)));
X(2) = min(max(P1(:,1)),max(P2(:,1)));
Y(1) = max(min(P1(:,2)),min(P2(:,2)));
Y(2) = min(max(P1(:,2)),max(P2(:,2)));
Z(1) = max(min(P1(:,3)),min(P2(:,3)));
Z(2) = min(max(P1(:,3)),max(P2(:,3)));
disp('there is an intersection');
else
disp('there is no intersection');
end
plot3(P1(:,1),P1(:,2),P1(:,3),'.b')
hold on
plot3(P2(:,1),P2(:,2),P2(:,3),'.r')
hold off
h = legend('cube1','cube2','intersection cube');
set(h,'orientation','horizontal','location','north')
axis equal vis3d
xlabel('x');
ylabel('y');
zlabel('z');
Akzeptierte Antwort
Jeffrey Clark
am 6 Dez. 2022
@Michael Ferguson, You can try the attached delaunayTriangulationIntersect.m function that I use to look for intersection of solids. This is your code showing your case and my slightly modified intersection case (also see attached figures):
A1 = [1.06890761348719 0.228825482643729 6.59315554806020];
B1 = [1.44834644922958 2.01394485398281 6.59315554806020];
C1 = [1.88232205180130 1.92170049205148 7.14104345088730];
D1 = [1.50288321605895 0.136581120712592 7.14104345088730];
E1 = [1.38125706283994 0.162433557649978 7.24173471345524];
F1 = [1.76069589858218 1.94755292898839 7.24173471345524];
G1 = [1.32672029601073 2.03979729091965 6.69384681062850];
H1 = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A1;B1;C1;D1;E1;F1;G1;H1];
DT1 = delaunayTriangulation(P1);
A2 = [2.13936288118597 1.24719872848015 6.52288724067451];
B2 = [1.62823228878787 2.82673229470654 5.76496624830234];
C2 = [1.90147565323319 3.17763404084656 6.31198638352805];
D2 = [2.41260624563123 1.59810047462036 7.06990737590013];
E2 = [2.27208449737978 1.58908440932306 7.14588335127981];
F2 = [1.76095390498189 3.16861797554878 6.38796235890797];
G2 = [1.48771054053678 2.81771622940902 5.84094222368265];
H2 = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A2;B2;C2;D2;E2;F2;G2;H2];
DT2 = delaunayTriangulation(P2);
figure
tetramesh(DT1,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1 and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
% Make intersecting case
D2F2m = mean([D2;F2]);
C1a = D2F2m+[0,0,0.1];
F1a = D2F2m-[0,0,0.1];
P1a = [A1;B1;C1a;D1;E1;F1a;G1;H1];
DT1a = delaunayTriangulation(P1a);
figure
tetramesh(DT1a,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1a,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1a and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Line Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!