vector and for-loop issues in ode solver
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
uki71319
am 30 Nov. 2022
Bearbeitet: uki71319
am 27 Mär. 2023
Dear all, i am trying to solve a temperature-dependent kinetic expression in ode solver with concentration problem.
I'm not sure if making a loop for C in z direction(j) in ode is a correct way or not...
Any help or advice is greatly appreciated!!
Codes:
%F Interp to stepsize 5
x=0:5:l
F_fit=interp1(x_F,F,x)
function ddx= odefun(~, x) % x contains C
% x(1:n)=C
%%% How to make C alonz z with ceratin value ?
% Interp F
% C=rho./MW.*3.*(1-F_fit)
for j= 2:length(F_fit) %since C= x(1:input.n)
x(1:n,j)= rho./MW.*3.*(1-F_fit(j));
ddx(1)=MW.*(k0.*(rho).*exp(-Ea./(R.*x(n+1))).*x(1,j)...
-A(1).*(rho).*exp(-Ea./(R.*x(n+1))).*(C_0-x(1,j)));
ddx(2:n-1)=MW.*(k0.*(rho).*exp(-Ea./(R.*x(n+2:2*n-1))).*x(2:n-1,j)...
-A(2:n-1).*(rho).*exp(-Ea./(R.*x(n+2:2*n-1))).*(C_0-x(2:n-1,j)));
ddx(n)= MW.*(k0.*(rho).*exp(-Ea./(R.*x(2*n))).*x(n,j)...
-A(n).*(rho).*exp(-Ea./(R.*x(2*n))).*(C_0-x(n,j)));
end
ddx=ddx';
end
3 Kommentare
Star Strider
am 30 Nov. 2022
It appears that ‘f_eq’ needs to be an anonymous function.
It and all the arguments it needs will have to be passed to ‘odefun’.
Akzeptierte Antwort
Torsten
am 30 Nov. 2022
%Parameters
input.n=10; % # in r
input.Ea=63000; % [J/mol]
input.R=8.314; % [J/mol/K]
input.k0=505; % [m^3/kg/s]
input.H=112500; % [J/mol]
input.rho=360; % [kg/m^3]
input.MW=0.3; % [kg/mol]
l=0.8 % [m] z total length
p=2 % [bar]
%Concentration
%%% Presumption_1st_try_in_ode, which is wrong
F_degree=[0.04, 0.10, 0.25, 0.40, 0.65, 0.85]
% A--> B+3*gas
input.C_0=input.rho./input.MW.*3.*(1-F_degree(1)) % [mol/m^3] the [C] of gas molecule still in A at the start
input.C=input.rho./input.MW.*3.*(1-F_degree(end)) % [mol/m^3] the [C] of gas molecule still in A
%%% Correct calculation for concentration %%%
z=linspace(0,0.8,6)
C_0=input.rho./input.MW.*3.*(1-F_degree(1)) % at the beginning
C=input.rho./input.MW.*3.*(1-F_degree)
%%% plot
for i=1:length(F_degree)
C(i)= input.rho./input.MW.*3.*(1-F_degree(i));
end
C
plot(z,C,'r.',MarkerSize=10)
xlabel("z [m]"); ylabel("C [mol/m^3]")
title('C vs z')
%Rate
%r = k0 *(rho)*exp(-Ea/(R*T))*C - k0/Keq *(rho)*exp(-Ea/(R*T))*(C_0-C)
%r = input.k0 *(input.rho)*exp(-input.Ea/(input.R*T))*input.C - input.k0./input.Keq *(input.rho)*exp(-input.Ea/(input.R*T))*(input.C_0-input.C)
T0=linspace(300,350,input.n);
[z, T] = ode45(@(z,T) odefun(z,T,input), 0:0.005:l, T0)
function dTdz= odefun(~,T,input)
p=2;
f_eq(1)=1-(exp((0.08-6*10^-4*p).*(160+44.*log(p+3)-(T(1)-273.15)))./(1+exp((0.08-6*10^-4.*p).*(160+44.*log(p+3)-(T(1)-273.15)))));
f_eq(2:input.n-1)=1-(exp((0.08-6*10^-4*p).*(160+44.*log(p+3)-(T(2:input.n-1)-273.15)))./(1+exp((0.08-6*10^-4.*p).*(160+44.*log(p+3)-(T(2:input.n-1)-273.15)))));
f_eq(input.n)=1-(exp((0.08-6*10^-4*p).*(160+44.*log(p+3)-(T(input.n)-273.15)))./(1+exp((0.08-6*10^-4.*p).*(160+44.*log(p+3)-(T(input.n)-273.15)))));
Keq=f_eq./(1-f_eq);
Keq = Keq.';
dTdz(1) = -input.H.*(input.k0.*(input.rho).*exp(-input.Ea./(input.R.*T(1))).*input.C...
-input.k0./Keq(1).*(input.rho).*exp(-input.Ea./(input.R.*T(1))).*(input.C_0-input.C));
dTdz(2:input.n-1) = -input.H.*(input.k0.*(input.rho).*exp(-input.Ea./(input.R.*T(2:input.n-1))).*input.C...
-input.k0./Keq(2:input.n-1).*(input.rho).*exp(-input.Ea./(input.R.*T(2:input.n-1))).*(input.C_0-input.C));
dTdz(input.n) = -input.H.*(input.k0.*(input.rho).*exp(-input.Ea./(input.R.*T(input.n))).*input.C...
-input.k0./Keq(input.n).*(input.rho).*exp(-input.Ea./(input.R.*T(input.n))).*(input.C_0-input.C));
dTdz=dTdz';
end
7 Kommentare
Torsten
am 2 Dez. 2022
Bearbeitet: Torsten
am 2 Dez. 2022
doesn't that mean i need to give up using odesolver? Or is it still using the MOL with ode solver to solve it?
It means that you use your measurement data to solve the energy equation using the MOL approach.
--> I thought this is the way for not using kinetic expression; With kinetic expression term, then i can easily use MOL to solve my equations. Am i wrong? sorry i get confused by your way...
So you know the kinetic parameters for the degassing reaction ? And why then do you need F_degree in your model ? If you have the kinetic parameters, you can calculate F_degree by solving simultaneously the equation for C and T.
My new idea is: since from my experimental data, C is already known for certain points along z based on F_degree, thus i just need to interpolate the C data into C_fit along z with z_stepsize. And thus i think i just need to deal with heat balance eq.
But this is exactly what I suggested: deduce the reaction term in mol/(m^3*s) from your measurement data prior to your simulation and only solve the energy equation with these values fixed. But why do you need K_eq / f_eq for this ?
As far as I see, you have two alternatives:
If you have the kinetic parameters for a general degassing kinetic, you don't need F_degree. You can solve C and T simultaneously and get F_degree from the simulation (assuming that the other model parameters are known and don't need to be determined).
If you don't have the kinetic parameters, then - prior to your simulation - you can estimate the molar fluxes for z (and assuming uniform distribution over r, also for r) from F_degree. Having these terms, you can include them in the energy equation and solve it alone (without using the equation for C).
And with respect to the mentionned aim of your simulation:
I find it quite strange that you want to fit the two parameters you mentionned (thermal conductivity and heat transfer coefficient) by some kind of simulation. There are well-suited experimental designs (especially to measure thermal conductivity).
Torsten
am 2 Dez. 2022
But prior to my simulation --> That means i need to write a for-loop?
I think pencil and paper is more suited regarding the number of elements in F_degree.
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!