How to iterate over multiple vectors or using a function to draw multiple vectors without using the same piece of code again and again?

3 Ansichten (letzte 30 Tage)
I have below the following 12 vectors:
% FEC = 3.8x10^-3
% % For Phi/Psi = +/-10
CoverageArea_mean_10 = [84.4735,21.1779,6.4247,2.1416];
CoverageArea_min_10 = [98.5128,21.1779,6.9007,2.1416];
CoverageArea_max_10 = [70.1963,19.0363,5.9488,2.1416];
% For Phi/Psi = +/-40
CoverageArea_mean_40 = [0,4.5211,2.3795,0];
CoverageArea_min_40 = [92.5640,21.1779,6.9007,2.1416];
CoverageArea_max_40 = [0,0.4759,0.2380,0];
% FEC = 10^-5
% % For Phi/Psi = +/-10
% CoverageArea_mean_10 = [45.2112,8.8043,1.1898,0];
% CoverageArea_min_10 = [58.7745,10.7079,2.1416,0];
% CoverageArea_max_10 = [38.5485,8.3284,0,0];
% % For Phi/Psi = +/-40
% CoverageArea_mean_40 = [0,0,0,0];
% CoverageArea_min_40 = [53.7775,10.4700,1.4277,0];
% CoverageArea_max_40 = [0,0,0,0];
I want to draw every three vectors in one figure as I did below:
x = [15,30,45,60];
figure
% For Phi/Psi = +/-10
COVERAGE = [CoverageArea_min_10;CoverageArea_mean_10;CoverageArea_max_10];
COVERAGEAREA = [COVERAGE(:,1)';COVERAGE(:,2)';COVERAGE(:,3)';COVERAGE(:,4)'];
bar(x,COVERAGEAREA);
title({'The coverage area';[' \phi = \pm10',' \psi = \pm10',' FEC = 3.8\times10^{-3}']});
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
figure
% For Phi/Psi = +/-40
COVERAGE1 = [CoverageArea_min_40;CoverageArea_mean_40;CoverageArea_max_40];
COVERAGEAREA1 = [COVERAGE1(:,1)';COVERAGE1(:,2)';COVERAGE1(:,3)';COVERAGE1(:,4)'];
bar(x,COVERAGEAREA1);
title({'The coverage area';[' \phi = \pm40',' \psi = \pm40',' FEC = 3.8\times10^{-3}']});
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
The code above will plot the first six vectors in two figures. Now, I need to draw the second 6 vectors in the same manner, but I do not need to write the same above code again. I need to plot all these vectors in the same time every three vectors in one figure. How can I iterrate over them? Or put them in a function to plot them? Any assistance please?

Akzeptierte Antwort

KALYAN ACHARJYA
KALYAN ACHARJYA am 27 Nov. 2022
Bearbeitet: KALYAN ACHARJYA am 27 Nov. 2022
% FEC = 3.8x10^-3
% % For Phi/Psi = +/-10
CoverageArea_mean_10 = {[84.4735,21.1779,6.4247,2.1416],[45.2112,8.8043,1.1898,0]};
CoverageArea_min_10 = {[98.5128,21.1779,6.9007,2.1416],[58.7745,10.7079,2.1416,0]};
CoverageArea_max_10 = {[70.1963,19.0363,5.9488,2.1416],[38.5485,8.3284,0,0]};
% For Phi/Psi = +/-40
CoverageArea_mean_40 = {[0,4.5211,2.3795,0],[0,0,0,0]};
CoverageArea_min_40 = {[92.5640,21.1779,6.9007,2.1416],[53.7775,10.4700,1.4277,0]};
CoverageArea_max_40 = {[0,0.4759,0.2380,0],[0,0,0,0]};
for i=1:2
x = [15,30,45,60];
figure
% For Phi/Psi = +/-10
COVERAGE = [CoverageArea_min_10{i};CoverageArea_mean_10{i};CoverageArea_max_10{i}];
COVERAGEAREA = [COVERAGE(:,1)';COVERAGE(:,2)';COVERAGE(:,3)';COVERAGE(:,4)'];
bar(x,COVERAGEAREA);
title({'The coverage area';[' \phi = \pm10',' \psi = \pm10',' FEC = 3.8\times10^{-3}']});
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
figure
% For Phi/Psi = +/-40
COVERAGE1 = [CoverageArea_min_40{i};CoverageArea_mean_40{i};CoverageArea_max_40{i}];
COVERAGEAREA1 = [COVERAGE1(:,1)';COVERAGE1(:,2)';COVERAGE1(:,3)';COVERAGE1(:,4)'];
bar(x,COVERAGEAREA1);
title({'The coverage area';[' \phi = \pm40',' \psi = \pm40',' FEC = 3.8\times10^{-3}']});
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
end
  2 Kommentare
Haitham AL Satai
Haitham AL Satai am 27 Nov. 2022
Bearbeitet: Haitham AL Satai am 27 Nov. 2022
@KALYAN ACHARJYA Thank you very much sir. Just one small thing, how can I change the title?
title({ 'The coverage area' ;[ '\phi = \pm10' , '\psi = \pm10' , 'FEC = 3.8\times10^{-3}' ]});
Especially this part
'FEC = 3.8\times10^{-3}'
This is because it will be the same for all.
For the first two figures, it must have the following tilte:
title({ 'The coverage area' ;[ '\phi = \pm10' , '\psi = \pm10' , 'FEC = 3.8\times10^{-3}' ]});
On the second two figure it must have the following
title({ 'The coverage area' ;[ '\phi = \pm10' , '\psi = \pm10' , 'FEC =10^{-5}' ]});

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Propagation and Channel Models finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by