Partial derivative with respect to x^2

12 Ansichten (letzte 30 Tage)
Yadavindu
Yadavindu am 18 Nov. 2022
Kommentiert: VBBV am 20 Jan. 2023
Suppose I have a function f
f = (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
how do I take derivative of this function with respect to x^2.
I have used diff(f, x^2) but it is returning an error.
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
diff(f,x^2)
Error using sym/diff
Second argument must be a variable or a nonnegative integer specifying the number of differentiations.

Antworten (3)

David Goodmanson
David Goodmanson am 18 Nov. 2022
Bearbeitet: David Goodmanson am 18 Nov. 2022
Hi Yadavindu,
df/d(x^2) = (df/dx) / (d(x^2)/dx) = (df/dx) / (2*x)
which you can code up without the issue you are seeing.
  5 Kommentare
Yadavindu
Yadavindu am 18 Nov. 2022
so the code would be
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
f1=diff(f,x)
f1 = 
f2= f1/(2*x)
f2 = 
David Goodmanson
David Goodmanson am 18 Nov. 2022
yes, although you could write it in one line and toss in a simplify:
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y);
f1 = simplify(diff(f,x)/(2*x))
f1 = (2*x^5*y^3 + 4*x^3*y^3 - x^2*z^2 - 2*x*y + z^2)/(2*x*y*(x^2 + 1)^2)

Melden Sie sich an, um zu kommentieren.


KSSV
KSSV am 18 Nov. 2022
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
dfdx = diff(f,x)
dfdx = 
dfdx2 = diff(dfdx,x)
dfdx2 = 
  1 Kommentar
Yadavindu
Yadavindu am 18 Nov. 2022
Thank you for your reply, however I think, if I take derivative of d(df\dx)\dx = (d^2(f) \ (dx)(dx)) will give double partial derivative rather my question was whether there exist any direct way to calculate (df / d(x^2)).

Melden Sie sich an, um zu kommentieren.


VBBV
VBBV am 18 Nov. 2022
Bearbeitet: VBBV am 18 Nov. 2022
syms x y z t
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
% t = x^2 % assume x = sqrt(t)
F = subs(f,x,sqrt(t))
F = 
y = diff(F,t)
y = 
Y = subs(y,t,x^2) % back substitute with x
Y = 
  3 Kommentare
Yadavindu
Yadavindu am 18 Nov. 2022
Thank you for your reply
VBBV
VBBV am 20 Jan. 2023
If it solved your problem (which i hope it did) pls accept the answer.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by