
about psd estimation by FFT
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Abdullah Talha Sözer
am 10 Nov. 2022
Kommentiert: Abdullah Talha Sözer
am 11 Nov. 2022
Hi,
In topic "Power Spectral Density Estimates Using FFT (https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html)", why are squared dft values multipled by (1/(fs*N))?
fs = 1000;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*100*t) + randn(size(t));
N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:fs/length(x):fs/2;
0 Kommentare
Akzeptierte Antwort
Askic V
am 10 Nov. 2022
It is because of Parseval's theorem, which expresses the energy of a signal in time-domain in terms of the average energy in its frequency components

In this case, n and k are integers, but actually these are samples i.e. discrete time intervals, so they can be considered as n*deltaT, in such case it is
deltaT is a sample time period i.e. deltaT = 1/Fs where Fs is a sampling frequency.
That is why 1/(fs*N)!
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Parametric Spectral Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!