How to get ROC curve using SVM?
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have extracted the features of finger knuckles using LBP and now want to classify using SVM. I am using following code and I get values of F1 score , recall, percision, and accuracy. Now I also want to plot ROC curve. Plz help me which changes are required to get ROC for one-vs-all classicification using SVM. Feat file is attached.
clc
clear
close all
%%
Data = load ("Feat13.mat");
Features = Data.Feat (:,1:end-1);
Labels = Data.Feat (:,end);
% Features = Data.Feat (1:200,1:end-1); % for 1st 200 only
% Labels = Data.Feat (1:200,end);
% [m,n] = size(Features);
[m,n] = size(Data.Feat);
P = 0.50;
idx = randperm(m) ;
Training = Data.Feat(idx(1:round(P*m)),:);
Testing = Data.Feat(idx(round(P*m)+1:end),:);
Train_Features = Training(:,1:end-1);
Train_Labels = Training(:,end);
Test_Features = Testing(:,1:end-1);
Test_Labels = Testing(:,end);
rng(1); % For reproducibility
% SVMModel = fitcecoc(Train_Features,Train_Labels);
t = templateSVM('Standardize',true,'KernelFunction','linear');
SVMModel = fitcecoc(Train_Features,Train_Labels,'Learners',t);
error = resubLoss(SVMModel)
[Pred_TrainLabels,Pred_TrainScore] = predict(SVMModel,Train_Features);
[Pred_TestLabels,Pred_TestScore] = predict(SVMModel,Test_Features);
% ROC_data = roc_curve(Test_Labels,Pred_TestLabels)
% [Pred_WholeLabels,Pred_WholeScore] = predict(SVMModel,Features);
% ROC_data = roc_curve(Labels,Pred_wholeLabels)
% ROC_data = roc_curve(Labels,Pred_WholeLabels)
%
% [X,Y,T,AUC] = perfcurve(Labels,Pred_WholeScore,'5')
% plot(X,Y)
%% % For whole labels and scores
% [tpr,fpr,thresholds] = roc(Labels,Pred_WholeLabels);
% plotroc(Labels,Pred_WholeScore())
% %% For Test labels and scores only
% [tpr,fpr,thresholds] = roc(Labels,Pred_TestLabels);
% plotroc(Labels,Pred_TestScore())
% [c_matrixp,Result]= confusion.getMatrix(Test_Labels,Pred_TestLabels);
% [c_matrixp,Result]= confusion.getMatrix(Labels,Pred_WholeLabels);
fig = figure;
cm = confusionchart(Test_Labels,Pred_TestLabels,'RowSummary','row-normalized','ColumnSummary','column-normalized');
% cm = confusionchart(Labels,Pred_WholeLabels,'RowSummary','row-normalized','ColumnSummary','column-normalized');
cm.Title = 'Finger Creases Classification Using SVM';
cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';
[m, order] = confusionmat(Test_Labels,Pred_TestLabels);
Diagonal=diag(m);
sum_rows=sum(m,2);
Precision=Diagonal./sum_rows;
Overall_Precision=mean(Precision)
sum_col=sum(m,1);
recall=Diagonal./sum_col';
recall(isnan(recall))=0;
overall_recall=mean(recall)
F1_Score=2*((Overall_Precision*overall_recall)/(Overall_Precision+overall_recall))
accuracy = sum(Test_Labels == Pred_TestLabels,'all')/numel(Pred_TestLabels)
0 Kommentare
Antworten (1)
Rohit
am 22 Feb. 2023
You can compute a ROC curve and other performance curves by creating a rocmetrics object which support both binary and multiclass classification.
Refer to the below documentation links for further reference-
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!