solve double differentiation with two limits
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%% hello I am trying to solve the equation with double differentiation of M_z which is equal to w_x get the value of M_z(x) but could not solve it. Could you please help me to solve this equation. M_z(x= 0) = -150 and M_z(x= L) = 250 are given
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
syms w_x;
syms M_z;
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x);
eq1 = gradient(M_z(x),2) == -w_z(x);
soln1 = dsolve(eq1, M_z(0)==-150, M_z(L) == 250);
fplot(x, w_x(x), [0,L]);
0 Kommentare
Akzeptierte Antwort
VBBV
am 29 Okt. 2022
Bearbeitet: VBBV
am 29 Okt. 2022
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
% syms w_x;
syms M_z(x);
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x)
eq1 = diff(M_z(x),2) == -w_x_1
soln1 = dsolve(eq1, [M_z(0)==-150, M_z(L) == 250])
fplot(x, w_x(x), [0,L]); axis([0 30 -5 2])
3 Kommentare
VBBV
am 29 Okt. 2022
sol1 is for moment variable M_z(x) . please open a new question for your problem
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


