how find optimal threshold?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
alex
am 21 Okt. 2022
Beantwortet: Star Strider
am 21 Okt. 2022
Hi I have this code and my density functions are P(w1)=1/3 and P(w2)=2/3
x = [-5:.1:5];
plota = normpdf(x,0,1);
plotb = normpdf(x,1,0.8);
figure; hold on;
plot(x,plota,'r');
plot(x,plotb,'b');
How can I get optimal threshold like this

0 Kommentare
Akzeptierte Antwort
Star Strider
am 21 Okt. 2022
I am not certain what you are asking.
The ‘threshold’ as illustrated would be the mean (or median) of the selected normal distribution.
To get ‘area1’ and ‘area2’ —
x = [-5:.01:5];
plota = normpdf(x,0,1);
plotb = normpdf(x,1,0.8);
mean_a = mean(plota);
x_b = normpdf(mean_a,1,0.8);
area_a = 1 - normcdf(mean_a,0,1)
area_b = 1 - normcdf(mean_a,1,0.8)
figure
hold on
plot(x,plota,'r')
plot(x,plotb,'b')
plot([1 1]*mean_a, [0 1]*normpdf(mean_a,0,1), '--k')
patch([x(x>=mean_a) flip(x(x>=mean_a))], [zeros(size(x(x>=mean_a))) flip(normpdf(x(x>=mean_a),0,1))],'r', 'FaceAlpha',0.5)
patch([x(x>=mean_a) flip(x(x>=mean_a))], [zeros(size(x(x>=mean_a))) flip(normpdf(x(x>=mean_a),1,0.8))],'b', 'FaceAlpha',0.5)
hold off
I am not certain where you want to go from there.
.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Parallel Computing Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

