How to fit a smooth curve on discrete data.
    35 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Raj Arora
 am 19 Okt. 2022
  
    
    
    
    
    Bearbeitet: Torsten
      
      
 am 20 Okt. 2022
            Hello all, I want to produce an equation that can develop a continous smooth curve (does not matter whether it follow any distribution or any plot) which connect the data given below. Using that equation I can interpolate data in between but I want a smoooth curve not a discrete curve. Can anyone please help me with this.
x = [3, 2.5, 2, 1.5, 1, 0.5]
y = [1.8, 1.75, 1.71, 1.55, 0.8, 1.25]
plot(x,y)
0 Kommentare
Akzeptierte Antwort
  Torsten
      
      
 am 19 Okt. 2022
        Maybe something like this:
x = [3, 2.5, 2, 1.5, 1, 0.5];
y = [1.8, 1.75, 1.71, 1.55, 0.8, 1.25];
plot(x,y)
xx = linspace(x(1),x(end),100);
yy = interp1(x,y,xx,'cubic');
hold on
plot(xx,yy)
hold off
4 Kommentare
  Torsten
      
      
 am 20 Okt. 2022
				
      Bearbeitet: Torsten
      
      
 am 20 Okt. 2022
  
			Alex's idea is to approximate your data by a curve. This curve does not pass exactly through each of your data points, but gives a good approximation over the complete interval with a small number of coefficients.
x = [3, 2.5, 2, 1.5, 1, 0.5];
y = [1.8, 1.75, 1.71, 1.55, 0.8, 1.25];
fun = @(p,x) p(1)./(p(2)+(x-p(3)).^2)+p(4) ;
fun1 = @(p) fun(p,x)-y;
p0 = [-0.1;0.1;0.9;2] ;
sol = lsqnonlin(fun1,p0)
hold on
plot(x,y,'o')
xx = x(1):-0.01:x(end);
plot(xx,fun(sol,xx))
hold off
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


