Permutation with repeating elements.

17 Ansichten (letzte 30 Tage)
Sourov Kumar Mondal
Sourov Kumar Mondal am 16 Okt. 2022
Bearbeitet: Bruno Luong am 16 Okt. 2022
Hello, greetings! I have the following array, A= 1:7. I want to get all the possible permutations of seven elements and I am trying to get my answer like this
ans =
1 2 3 4 5 6 7
1 2 5 3 4 7 6
2 3 4 5 1 7 6...... etc
It should be easy. But in the 'A' matrix, 1 and 2 indicates the simillar thing; 3 and 4 indicates the simillar thing; 5, 6, and 7 indicates the simillar thing. So, in the 'ans' 1 2 3 4 5 6 7 and 2 1 4 3 7 6 5 will be same. I want the code to return the values without repitating it. Is there any way to do this?
note: I want this code to do linear indexing. So, I can't replace A with any other matrix. It has to be 1:7.

Akzeptierte Antwort

Bruno Luong
Bruno Luong am 16 Okt. 2022
Just brute force of filter out what is considered as duplicated
g = [1 1 2 2 3 3 3];
x = 1:7;
p = perms(x);
[~,i] = unique(perms(g),'rows');
p = p(i,:);
p
p = 210×7
2 1 4 3 7 6 5 2 1 4 7 3 6 5 2 1 4 7 6 3 5 2 1 4 7 6 5 3 2 1 7 4 3 6 5 2 1 7 4 6 3 5 2 1 7 4 6 5 3 2 1 7 6 4 3 5 2 1 7 6 4 5 3 2 1 7 6 5 4 3
  5 Kommentare
Sourov Kumar Mondal
Sourov Kumar Mondal am 16 Okt. 2022
Thanks again for the answer!
Bruno Luong
Bruno Luong am 16 Okt. 2022
Bearbeitet: Bruno Luong am 16 Okt. 2022
Simplify lperms
function p = lperms(x, k)
p = nchoosek(x,k);
p = reshape(p(:,perms(1:k)),[],k);
end

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

KSSV
KSSV am 16 Okt. 2022
A = {[1 2], [3 4], [5 6 7]} ;
iwant = perms(A)
iwant = 6×3 cell array
{[5 6 7]} {[ 3 4]} {[ 1 2]} {[5 6 7]} {[ 1 2]} {[ 3 4]} {[ 3 4]} {[5 6 7]} {[ 1 2]} {[ 3 4]} {[ 1 2]} {[5 6 7]} {[ 1 2]} {[5 6 7]} {[ 3 4]} {[ 1 2]} {[ 3 4]} {[5 6 7]}
  2 Kommentare
Sourov Kumar Mondal
Sourov Kumar Mondal am 16 Okt. 2022
Thanks for the answer. But this is keeping 1 and 2; 3 and 4; 5, 6, and 7 together always. The output I am looking for is just like normal permutations of 7 elements. but 1 and 2; 3 and 4; and 5,6 and 7 will behave like simillar elements. The no. of expected permutations would be (7! / (2! * 2! * 3!)). Is there any solution to this? thanks is advanced.
Sourov Kumar Mondal
Sourov Kumar Mondal am 16 Okt. 2022
Some expected outputs would be like this
1 3 5 7 6 4 2
1 4 3 5 6 2 7.... etc
But there won't be 2 3 5 7 6 1 because 1 and 2 are simillar

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by