Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
how to convert 3D datamatrix into same sixe of 2D matrix in this below example.
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
here in the code i've used surf points to classify the face data. my code is attached here
if true
  % code
    clear;
    PercentageOfTrainingData = 50;
    % ****************** Get all sub folder paths *****************************
    dirs = regexp(genpath('C:\Users\fathimath\Desktop\READ\Database-1'),('[^;]*'),'match');
    % ********************** Training ******************************
        count1=1;
        count2=1;
Training=zeros(700,1600);
Testing=zeros(700,1600);
        for k = 1 : 7
            fileList = getAllFiles(sprintf('%s',dirs{k+1})); % Get all files in sub folder
            NumberOfTrainingSamples = (PercentageOfTrainingData*length(fileList))/100;
            for i = 1 : 200
                Image = imresize(imread(sprintf('%s',fileList{i})),[40 40]);
                if(i <= NumberOfTrainingSamples)
                    TrainingData(count1,:) = Image(:);
                    traindatasurf = detectSURFFeatures(TrainingData);
                    Training=traindatasurf;
                    count1 = count1 + 1;
                else 
                    TestingData(count2,:) =Image(:);
                    testdatasurf = detectSURFFeatures(TestingData);
                    Testing=testdatasurf;
                    count2 = count2 + 1;
                end
            end
        end
%         traindatasurf = detectSURFFeatures(TrainingData);
%         testdatasurf = detectSURFFeatures(TestingData);
% traindata=pca(TrainingData,875);
% testdata=pca(TestingData,875);
% class(1:125)=1; % class(126:250)=2; % class(251:375)=3; % class(376:501)=4; % class(502:625)=5; % class(626:750)=6; % class(751:875)=7;
 Groupforclassification(1:NumberOfTrainingSamples,:) = 1;
 Groupforclassification(NumberOfTrainingSamples+1:2*NumberOfTrainingSamples,:) = 2; 
 Groupforclassification(2*NumberOfTrainingSamples+1:3*NumberOfTrainingSamples,:) = 3;
 Groupforclassification(3*NumberOfTrainingSamples+1:4*NumberOfTrainingSamples,:) = 4;
 Groupforclassification(4*NumberOfTrainingSamples+1:5*NumberOfTrainingSamples,:) = 5;
 Groupforclassification(5*NumberOfTrainingSamples+1:6*NumberOfTrainingSamples,:) = 6;
 Groupforclassification(6*NumberOfTrainingSamples+1:7*NumberOfTrainingSamples,:) = 7;
NumberofTestingSamples = 200 - NumberOfTrainingSamples; GroupforTesting(1:NumberofTestingSamples) = 1; GroupforTesting(NumberofTestingSamples+1:2*NumberofTestingSamples) = 2; GroupforTesting(2*NumberofTestingSamples+1:3*NumberofTestingSamples) = 3; GroupforTesting(3*NumberofTestingSamples+1:4*NumberofTestingSamples) = 4; GroupforTesting(4*NumberofTestingSamples+1:5*NumberofTestingSamples) = 5; GroupforTesting(5*NumberofTestingSamples+1:6*NumberofTestingSamples) = 6; GroupforTesting(6*NumberofTestingSamples+1:7*NumberofTestingSamples) = 7; count3 = 0; MaximumFmeasure = 0;
% % % **************** KNN classifier ***************************
for i = 1 : 2 : NumberOfTrainingSamples Class = knnclassify(Testing, Training, Groupforclassification,1); c = confusionmat(GroupforTesting,Class); display(c); if(size(c,1)==7) % % **************** Precision *************************** Pa = c(1,1)/(c(1,1)+c(2,1)+c(3,1)+c(4,1)+c(5,1)+c(6,1)+c(7,1)); Pb = c(2,2)/(c(1,2)+c(2,2)+c(3,2)+c(4,2)+c(5,2)+c(6,2)+c(7,2)); Pc = c(3,3)/(c(1,3)+c(2,3)+c(3,3)+c(4,3)+c(5,3)+c(6,3)+c(7,3)); Pd = c(4,4)/(c(1,4)+c(2,4)+c(3,4)+c(4,4)+c(5,4)+c(6,4)+c(7,4)); Pe= c(5,5)/(c(1,5)+c(2,5)+c(3,5)+c(4,5)+c(5,5)+c(6,5)+c(7,5)); Pf = c(6,6)/(c(1,6)+c(2,6)+c(3,6)+c(4,6)+c(5,6)+c(6,6)+c(7,6)); Pg = c(7,7)/(c(1,7)+c(2,7)+c(3,7)+c(4,7)+c(5,7)+c(6,7)+c(7,7)); Pavg = (Pa+Pb+Pc+Pd+Pe+Pf+Pg)/7; display(Pavg); % % **************** Recall *************************** Ra = c(1,1)/(c(1,1)+c(1,2)+c(1,3)+c(1,4)+c(1,5)+c(1,6)+c(1,7)); Rb = c(2,2)/(c(2,1)+c(2,2)+c(2,3)+c(2,4)+c(2,5)+c(2,6)+c(2,7)); Rc = c(3,3)/(c(3,1)+c(3,2)+c(3,3)+c(3,4)+c(3,5)+c(3,6)+c(3,7)); Rd = c(4,4)/(c(4,1)+c(4,2)+c(4,3)+c(4,4)+c(4,5)+c(4,6)+c(4,7)); Re = c(5,5)/(c(5,1)+c(5,2)+c(5,3)+c(5,4)+c(5,5)+c(5,6)+c(5,7)); Rf = c(6,6)/(c(6,1)+c(6,2)+c(6,3)+c(6,4)+c(6,5)+c(6,6)+c(6,7)); Rg = c(7,7)/(c(7,1)+c(7,2)+c(7,3)+c(7,4)+c(7,5)+c(7,6)+c(7,7)); Ravg = (Ra+Rb+Rc+Rd+Re+Rf+Rg)/7; display(Ravg); end % % **************** F-measure *************************** Fa = 2*(Pa * Ra)/(Pa + Ra); Fb = 2*(Pb * Rb)/(Pb + Rb); Fc = 2*(Pc * Rc)/(Pc + Rc); Fd = 2*(Pd * Rd)/(Pd + Rd); Fe = 2*(Pe * Re)/(Pe + Re); Ff = 2*(Pf * Rf)/(Pf + Rf); Fg = 2*(Pg * Rc)/(Pg + Rg); Favg = (Fa+Fb+Fc+Fd+Fe+Ff+Fg)/7; % count3 = count3 + 1; % % **************** Accuracy *************************** Accuracy = (c(1,1) + c(2,2) + c(3,3) +c(4,4) +c(5,5) +c(6,6)+ c(7,7))/size(TestingData,1)*100; % Resultmat(count3,:) =[Pavg,Ravg,Favg]; display(Accuracy); % % % end end
1 Kommentar
Antworten (0)
Diese Frage ist geschlossen.
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

