Unrecognized function or variable 'ode4'.

36 Ansichten (letzte 30 Tage)
Khang Nguyen
Khang Nguyen am 11 Okt. 2022
Kommentiert: Torsten am 11 Okt. 2022
I am trying to use ode4 to validate with the Runge-Kutta method, but keep getiing this error when I call ode4 "Unrecognized function or variable 'ode4'."
h=0.1; % step size
x = 0:h:60;
%y(1) = [-0.5;0.3;0.2];
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i));
k_2 = F_xy(x(i)+ 0.5*h*k_1);
k_3 = F_xy((x(i)+0.5*h*k_2));
k_4 = F_xy((x(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
y0 = -0.5;
yx = ode4(F_xy, 0,h,60, y0)
plot(x,y,'o-', x, yx, '--')

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 11 Okt. 2022
Bearbeitet: Walter Roberson am 11 Okt. 2022
  2 Kommentare
Khang Nguyen
Khang Nguyen am 11 Okt. 2022
Bearbeitet: Khang Nguyen am 11 Okt. 2022
I still get the same error.
h=0.1; % step size
x = 0:h:60;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
y0 = -0.5;
L = length(x)
tspan = linspace(0,60,L)
yx = ode4(F_xy, tspan, y0)
Walter Roberson
Walter Roberson am 11 Okt. 2022
Did you download the .zip file from that Question, and unzip it and place the directory on your MATLAB path ?

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Torsten
Torsten am 11 Okt. 2022
Bearbeitet: Torsten am 11 Okt. 2022
Look below at how k_1,...,k_4 must be computed in the case that your ODE function only depends on t, not y.
The classical Runge-Kutta boils down to the usual Simpson's rule.
h=0.1; % step size
x = 0:h:60;
%y(1) = [-0.5;0.3;0.2];
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i));
k_2 = F_xy(x(i)+0.5*h);
k_3 = F_xy(x(i)+0.5*h);
k_4 = F_xy(x(i)+h);
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
y0 = -0.5;
yx = ode4(@(t,y)F_xy(t), 0,h,60, y0);
plot(x,y,'o-', x, yx, '--')
function yout = ode4(F,t0,h,tfinal,y0)
% ODE4 Classical Runge-Kutta ODE solver.
% yout = ODE4(F,t0,h,tfinal,y0) uses the classical
% Runge-Kutta method with fixed step size h on the interval
% t0 <= t <= tfinal
% to solve
% dy/dt = F(t,y)
% with y(t0) = y0.
% Copyright 2014 - 2015 The MathWorks, Inc.
y = y0;
yout = y;
for t = t0 : h : tfinal-h
s1 = F(t,y);
s2 = F(t+h/2, y+h*s1/2);
s3 = F(t+h/2, y+h*s2/2);
s4 = F(t+h, y+h*s3);
y = y + h*(s1 + 2*s2 + 2*s3 + s4)/6;
yout = [yout; y]; %#ok<AGROW>
end
end
  3 Kommentare
Walter Roberson
Walter Roberson am 11 Okt. 2022
The error between what two values? You cannot calculate the error unless you have an analytic solution.
h=0.1; % step size
x = 0:h:60;
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
syms t C
intF = int(F_xy(t), t)
intF = 
eqn = subs(intF, t, 0) + C == y(1)
eqn = 
sol = solve(eqn)
sol = 
intF = subs(intF + C, C, sol)
intF = 
... that should be the analytic solution.
Torsten
Torsten am 11 Okt. 2022
If you compare your code and ode4, you'll see that they are identical. So there should be no difference in the results.

Melden Sie sich an, um zu kommentieren.

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by