How do I implement a genetic algorithm for parameter fitting to an already existing ODE system>

12 Ansichten (letzte 30 Tage)
So I am working on expanding an already working ODE system. I have my rate equations and fluxes for three additional differential equations. I would like to estimate 8 unique constants in the 3 rate equations which is all building upon a 20 equation ODE system. I also have vectorized how I would like my new 3 equations to behave for a specific input. How can I implement the genetic algorithm to focus on parameter fitting for this. I can't reveal specifically each portion of my code but i can put some filler code to demonstrate my issue. thanks in advance!
%raw data of how i want the model to behave
minutes = [10, 15, 20, 40, 60, 80]';
neweq1= [60,20,10,6,5,4.9 ]';
neweq2=[40,90,95,99,99.5]';
neweq3= [60,70,20,19.5,19]';
%fitfun= norm(fun(t)-expected value)
coeff= ga(fitfun,8);
function o= fitness (x,t,y)
y0=[200 0 .17 209.9 94.83 483.73 1.51 14.76 0 200 184.7 15.31 750 0 0 0 300 0 3000 0 100 0 0];
tspan=[0 100];
[t,y]=ode45 (@(t,y) fun, tspan, y0)
function dy=fun(t,y,input)
dy=zeros(23,0);
%20 rate equations
%my new 3 equations
%x is an array populated with the parameters i want to estimate and is a part of my new 3 equations
end
end

Akzeptierte Antwort

Star Strider
Star Strider am 14 Okt. 2022
Here is some prototype code I developed a while ago that you can adapt to your system —
t=[0.1
0.2
0.4
0.6
0.8
1
1.5
2
3
4
5
6];
c=[0.902 0.06997 0.02463 0.00218
0.8072 0.1353 0.0482 0.008192
0.6757 0.2123 0.0864 0.0289
0.5569 0.2789 0.1063 0.06233
0.4297 0.3292 0.1476 0.09756
0.3774 0.3457 0.1485 0.1255
0.2149 0.3486 0.1821 0.2526
0.141 0.3254 0.194 0.3401
0.04921 0.2445 0.1742 0.5277
0.0178 0.1728 0.1732 0.6323
0.006431 0.1091 0.1137 0.7702
0.002595 0.08301 0.08224 0.835];
ftns = @(theta) norm(c-kinetics(theta,t));
PopSz = 50;
Parms = 10;
optsAns = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',5E3, 'FunctionTolerance',1E-10); % Options Structure For 'Answers' Problems
% opts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',5E3, 'FunctionTolerance',1E-10, 'PlotFcn',@gaplotbestf, 'PlotInterval',1);
% optshf = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',5E3, 'FunctionTolerance',1E-10, 'HybridFcn',@fmincon, 'PlotFcn',@gaplotbestf, 'PlotInterval',1); % With 'HybridFcn'
t0 = clock;
fprintf('\nStart Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t0)
Start Time: 2022-10-14 13:00:28.3645
[theta,fval,exitflag,output,population,scores] = ga(ftns, Parms, [],[],[],[],zeros(Parms,1),Inf(Parms,1),[],[],optsAns);
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
t1 = clock;
fprintf('\nStop Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t1)
Stop Time: 2022-10-14 13:01:13.5609
GA_Time = etime(t1,t0)
GA_Time = 45.1964
DT_GA_Time = datetime([0 0 0 0 0 GA_Time], 'Format','HH:mm:ss.SSS');
fprintf('\nElapsed Time: %23.15E\t\t%s\n\n', GA_Time, DT_GA_Time)
Elapsed Time: 4.519638500000000E+01 00:00:45.196
fprintf('Fitness value at convergence = %.4f\nGenerations \t\t = %d\n\n',fval,output.generations)
Fitness value at convergence = 0.3752 Generations = 2919
fprintf(1,'\tRate Constants:\n')
Rate Constants:
for k1 = 1:length(theta)
fprintf(1, '\t\tTheta(%2d) = %8.5f\n', k1, theta(k1))
end
Theta( 1) = 0.00063 Theta( 2) = 1.18633 Theta( 3) = 3.51726 Theta( 4) = 11.19108 Theta( 5) = 1.47414 Theta( 6) = 0.63178 Theta( 7) = 1.10958 Theta( 8) = 0.02015 Theta( 9) = 0.04379 Theta(10) = 0.00001
tv = linspace(min(t), max(t));
Cfit = kinetics(theta, tv);
figure
hd = plot(t, c, 'p');
for k1 = 1:size(c,2)
CV(k1,:) = hd(k1).Color;
hd(k1).MarkerFaceColor = CV(k1,:);
end
hold on
hlp = plot(tv, Cfit);
for k1 = 1:size(c,2)
hlp(k1).Color = CV(k1,:);
end
hold off
grid
xlabel('Time')
ylabel('Concentration')
legend(hlp, compose('C_%d',1:size(c,2)), 'Location','N')
function C=kinetics(theta,t)
c0 = theta(7:10);
% c0=[1;0;0;0];
[T,Cv]=ode45(@DifEq,t,c0);
%
function dC=DifEq(t,c)
dcdt=zeros(4,1);
dcdt(1)=-theta(1).*c(1)-theta(2).*c(1);
dcdt(2)= theta(1).*c(1)+theta(4).*c(3)-theta(3).*c(2)-theta(5).*c(2);
dcdt(3)= theta(2).*c(1)+theta(3).*c(2)-theta(4).*c(3)+theta(6).*c(4);
dcdt(4)= theta(5).*c(2)-theta(6).*c(4);
dC=dcdt;
end
C=Cv;
end
I estimate the initial conditions for the differential equations as the last ‘n’ values of the parameter vector, where ‘n’ are the number of differential equations in the systen, since it is easier to estimate them as parameters than to fix them as constants. It is also more robust.
I set ‘PopSz’ to 50 so it will run here in the time permitted. Increase it to at least 100 to get better initial results.
Use the ‘optshf’ options to use a hybrid function to fine-tune the estimated parameters using the fmincon function. (I use ‘optsAns’ here because some options I use offline are not permitted with the online Run feature.) Use ‘opts’ or ‘optshf’ instead offline.
.
  6 Kommentare
Samhitha Tumkur
Samhitha Tumkur am 8 Nov. 2022
Ah ok. Thank you!
I fixed my issue witht the code as I needed to interpolate the answer from the ODE so I could more easily compare it with my expected data and that got me an answer!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Vinayak Choyyan
Vinayak Choyyan am 14 Okt. 2022
Hi,
As per my understanding, you would like to implement a genetic algorithm to fit parameters.
Following are some resources that might help you with your issue.
  1. Genetic Algorithm - MATLAB & Simulink (mathworks.com)
  2. What Is a Genetic Algorithm? - Video - MATLAB (mathworks.com) - This contains how various approaches of genetic algorithm can be applied to given equations.
  3. Simple code for genetic algorithm - File Exchange - MATLAB Central (mathworks.com)- This contains a sample code which shows how genetic algorithm can be used to minimize or maximize equations.

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by