How to Use the Reinforcement Learning Toolbox to Draw Observations While Training?

2 Ansichten (letzte 30 Tage)
Hi!
How to Use the Reinforcement Learning Toolbox to Draw Observations While Training?Here is my code:
ObservationInfo = rlNumericSpec([12 1]);
% Initialize Action settings
ActionInfo = rlNumericSpec([6 1], ...
'LowerLimit', [-1; -1; -1; -1; -1; -1], ...
'UpperLimit', [1; 1; 1; 1; 1; 1]);
%Env
env = rlFunctionEnv(ObservationInfo,ActionInfo,'myStepFunction','myResetFunction');
% Simulation time and sample rate
Ts = 0.02;
% %% Deep Neural Network Options
% %Define the critic network
statePath = [
imageInputLayer([12 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(400,'Name','CriticStateFC1')
reluLayer('Name', 'Criticrelu1')
fullyConnectedLayer(300,'Name','CriticStateFC2')];
actionPath = [
imageInputLayer([6 1 1],'Normalization','none','Name','action')
fullyConnectedLayer(300,'Name','CriticActionFC1')];
commonPath = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1,'Name','CriticOutput')];
criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,ObservationInfo,ActionInfo,...
'Observation',{'observation'},'Action',{'action'},criticOpts);
%Define the actor network
actorNetwork = [
imageInputLayer([12 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(400,'Name','ActorFC1')
reluLayer('Name','ActorRelu1')
fullyConnectedLayer(300,'Name','ActorFC2')
reluLayer('Name','ActorRelu2')
fullyConnectedLayer(6,'Name','ActorFC3')
tanhLayer('Name','ActorTanh')
scalingLayer('Name','ActorScaling','Scale',max(ActionInfo.UpperLimit))];
actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,ObservationInfo,ActionInfo,'Observation',{'observation'},'Action',{'ActorScaling'},actorOpts);
%% Set Agent and DDPG Options
agentOpts = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'TargetSmoothFactor',1e-3,...
'ExperienceBufferLength',1e5,...
'DiscountFactor',0.99,...
'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
agent = rlDDPGAgent(actor,critic,agentOpts);
%% Set Training Options
maxepisodes = 100;
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',1000,...
'ScoreAveragingWindowLength',50,...
'Verbose',false,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',0,...
'SaveAgentCriteria','EpisodeReward',...
'SaveAgentValue',0);
%% Training
%Train the DDPG algorithm on the enviroment.
trainingStats = train(agent,env,trainOpts);
I would be grateful if you could help me!

Antworten (1)

Emmanouil Tzorakoleftherakis
You can use the information on plotting and visualization from this page to plot/visualize information during training
  3 Kommentare
Harold
Harold am 31 Mär. 2025
Hello @Emmalevel devil I'm sorry, but I don't see any information on this page about plotting and visualization techniques during training. Could you please provide the page again or perhaps share the specific section where this information is located? I'd be happy to help once I have the necessary context.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by