LSQcurvefit does not yield same result for comparable data sets
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Rebecca Belmer
am 29 Sep. 2022
Kommentiert: Torsten
am 29 Sep. 2022
I have used the following code to fit my data. Key is that the fit captures the peak at the start of the curve.
For a lot of data sets, the method works (example are x_good,y_good).
For two sets this method does not work adequate enough (x5, y5 and x10, y10)
Anyone who can see if I am doing something wrong? Or give a different method which works better?
clear all
clc
close all
% Working data set
x_good = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y_good = [0.000001 -1.791689626 -2.085814283 -1.254192484 -1.130978553 -0.852663995 -0.650156083 -0.605732792 -0.552092535 -0.466707459 -0.381595899 -0.341840176 -0.112360934 -0.107089368];
%Not working data set
x5 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.299833333 0.359833333 0.509833333 0.589833333 0.674833333];
y5 = [0.000001 -1.512917459 -1.397221246 -0.861543826 -0.678138048 -0.538930943 -0.440640054 -0.253865251 -0.192352332 0.001791084 0.078138742 0.156925367];
%Not working data set
x10 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y10 = [0.000001 -0.909146404 -1.389416499 -0.736431181 -0.767464076 -0.430784784 -0.298350016 -0.477736703 -0.174485909 -0.10975744 -0.038531763 0.009471926 0.133414928 0.178482903];
% LSQ
t = x5;
y =y10;
xspace = linspace(t(1), t(end), 1000);
options = optimoptions('lsqcurvefit', 'MaxFunctionEvaluations', 100e3)
% fit function y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)
F = @(x,t)(x(1)*exp(-x(2)*t) + x(3)*exp(-x(4)*t));
x4 = [1 1 1 0];
[x,resnorm,~,~,output] = lsqcurvefit(F,x4,t,y, [], [], options)
figure
plot(t,y,'ro')
title("Least squared method ")
hold on
plot(t,F(x,t), 'r')
hold on
plot(xspace, F(x, xspace), '--r')
set(gca, 'YDir','reverse')
legend("data points", "LSQ, resnorm: " + resnorm, "LSQ continous")
0 Kommentare
Akzeptierte Antwort
Torsten
am 29 Sep. 2022
Use
x4 = [-2.1782 5.0283 2.1782 720.8491];
instead of
x4 = [1 1 1 0];
as initial guess for the parameters.
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!