LSQcurvefit does not yield same result for comparable data sets

5 Ansichten (letzte 30 Tage)
I have used the following code to fit my data. Key is that the fit captures the peak at the start of the curve.
For a lot of data sets, the method works (example are x_good,y_good).
For two sets this method does not work adequate enough (x5, y5 and x10, y10)
Anyone who can see if I am doing something wrong? Or give a different method which works better?
clear all
clc
close all
% Working data set
x_good = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y_good = [0.000001 -1.791689626 -2.085814283 -1.254192484 -1.130978553 -0.852663995 -0.650156083 -0.605732792 -0.552092535 -0.466707459 -0.381595899 -0.341840176 -0.112360934 -0.107089368];
%Not working data set
x5 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.299833333 0.359833333 0.509833333 0.589833333 0.674833333];
y5 = [0.000001 -1.512917459 -1.397221246 -0.861543826 -0.678138048 -0.538930943 -0.440640054 -0.253865251 -0.192352332 0.001791084 0.078138742 0.156925367];
%Not working data set
x10 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y10 = [0.000001 -0.909146404 -1.389416499 -0.736431181 -0.767464076 -0.430784784 -0.298350016 -0.477736703 -0.174485909 -0.10975744 -0.038531763 0.009471926 0.133414928 0.178482903];
% LSQ
t = x5;
y =y10;
xspace = linspace(t(1), t(end), 1000);
options = optimoptions('lsqcurvefit', 'MaxFunctionEvaluations', 100e3)
% fit function y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)
F = @(x,t)(x(1)*exp(-x(2)*t) + x(3)*exp(-x(4)*t));
x4 = [1 1 1 0];
[x,resnorm,~,~,output] = lsqcurvefit(F,x4,t,y, [], [], options)
figure
plot(t,y,'ro')
title("Least squared method ")
hold on
plot(t,F(x,t), 'r')
hold on
plot(xspace, F(x, xspace), '--r')
set(gca, 'YDir','reverse')
legend("data points", "LSQ, resnorm: " + resnorm, "LSQ continous")

Akzeptierte Antwort

Torsten
Torsten am 29 Sep. 2022
Use
x4 = [-2.1782 5.0283 2.1782 720.8491];
instead of
x4 = [1 1 1 0];
as initial guess for the parameters.
  2 Kommentare
Rebecca Belmer
Rebecca Belmer am 29 Sep. 2022
Thank you! It works!
Can you tell me how I can best guess x4? Or how you found these values?
Torsten
Torsten am 29 Sep. 2022
From the fit results of y_good against x_good :-)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by