Solving for two variable.
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sebastian
am 10 Sep. 2022
Bearbeitet: Torsten
am 10 Sep. 2022
I have:
clearclc
x=[7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
y=[0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
but I need do find n and I0 from:
I = I0 * e^( (q*U)/(n*k*T) )
I already know q, U, k and T.
2 Kommentare
Alan Stevens
am 10 Sep. 2022
Bearbeitet: Alan Stevens
am 10 Sep. 2022
What are the equivalents of x and y in your equation? Presumably, y represents I. What does x represent?
Akzeptierte Antwort
Alan Stevens
am 10 Sep. 2022
Bearbeitet: Alan Stevens
am 10 Sep. 2022
In that case one way is to take logs of both sides to get:
log(I) = log(I0) + q/(n*k*T)*U
then do a best-fit straight line to the data (use log(x)) and get log(I0) from the intercept and q/(n*k*T) from the slope, from which yoiu can then get I0 and n.
4 Kommentare
Torsten
am 10 Sep. 2022
x=[7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
y=[0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
% You said x = I and U = y so
p=polyfit(y,log(x),1);
f=polyval(p,y);
figure(1)
plot(y,log(x),'o',y,f,'-'), grid
xlabel('U'),ylabel('logI')
% Intercept is p(2), slope is p(1)
I0 = exp(p(2));
q_on_nkT = p(1); % You need to rearrange this to get n, using
% your known values for q, k and T
q = 1.60*10^(-19);
k = 1.38*10^(-23);
T = 300;
n = q/(k*T*q_on_nkT);
disp(I0)
disp(n)
figure(2)
plot(y,x,'o',y,I0*exp(q/(k*T)*y/n),'-'), grid
xlabel('U'),ylabel('I')
Weitere Antworten (1)
Torsten
am 10 Sep. 2022
Bearbeitet: Torsten
am 10 Sep. 2022
I = [7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
U = [0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
q = 1.60*10^(-19);
k = 1.38*10^(-23) ;
T = 300;
value = q/(k*T);
fun = @(I0,n) I - I0 * exp( value * U / n );
p0 = [1 ; 10]; % Initial guess for I0 and n
options = optimset('TolX',1e-10,'TolFun',1e-10,'MaxFunEvals',100000,'MaxIter',100000);
sol = lsqnonlin(@(p)fun(p(1),p(2)),p0,[],[],options);
format long
I0 = sol(1)
n = sol(2)
hold on
plot(U,I,'o')
plot(U,I0 * exp( value * U / n ))
grid
hold off
4 Kommentare
Torsten
am 10 Sep. 2022
Bearbeitet: Torsten
am 10 Sep. 2022
No, you are wrong.
Applying log to your equation distorts the fitting.
You must fit I0*exp(value * U / n) against U to get unbiased estimates for your parameters.
Fitting log(I0) + value/n * U against log(U) only gives an approximation for I0 and n.
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




