How to keep a specific value in binary matrix with column constraint?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Maria
am 9 Sep. 2022
Bearbeitet: Maria
am 21 Sep. 2022
Hello!
i have a binary matrix A(10*10) , i want to return '1' to '0' to get a single one in each row. I'm wondering how I can do this, knowing that I can keep a '1' in different columns except the last column, i.e. the last column cannot contain a '1'.
A [1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1]
0 Kommentare
Akzeptierte Antwort
Fangjun Jiang
am 9 Sep. 2022
Bearbeitet: Fangjun Jiang
am 9 Sep. 2022
N=10;
A=eye(N);
B=A(:,randperm(N));% shuffle the Identity matrix randomly
RandCol=randi(N-1);
B(:,RandCol)=B(:,RandCol)+B(:,end);% move the 1 in last column randomly to the left
B(:,end)=0
% To verify
sum(B)
sum(B,2)
27 Kommentare
Weitere Antworten (1)
Torsten
am 17 Sep. 2022
Bearbeitet: Torsten
am 17 Sep. 2022
Your last question was quite interesting - so I invested some time ...
If A becomes larger, you will have to work with sparse inputs to intlinprog.
%rng('default')
% n = 100; % number of rows of A
% m = 60; % number of columns of A
n = 200; % number of rows of A
m = 120; % number of columns of A
bound_ones = 5; % bound for column sums of B
A = randi([0 1],n,m); % generate random binary matrix
%
% Usually, nothing needs to be changed after this line
if any(sum(A,2)==0)
display('Matrix A inappropriate.');
return
end
s = nnz(A);
%
% Objective function
% max: sum_ij cij = sum_ij (aij - bij)
% is equivalent to
% min: -sum_ij cij = -sum_ij (aij - bij)
f = [zeros(n*m,1);-ones(n*m,1)];
%f = zeros(2*n*m,1);
%
% Equality constraints
% cij = aij - bij
Aeq1 = zeros(n*m,2*n*m);
beq1 = zeros(n*m,1);
counter = 0;
for i = 1:n
for j = 1:m
counter = counter + 1;
Aeq1(counter,counter) = 1.0;
Aeq1(counter,counter+n*m) = 1.0;
beq1(counter) = A(i,j);
end
end
%sum_j bij = 1 (1 <= i <= n)
Aeq2 = zeros(n,2*n*m);
beq2 = zeros(n,1);
for i = 1:n
Aeq2(i,(i-1)*m+1:i*m) = 1.0;
beq2(i) = 1.0;
end
%Concatenate equality constraints
Aeq = [Aeq1;Aeq2];
beq = [beq1;beq2];
%
%Inequality constraints
%sum_i bij <= bound_ones (1 <= j <= m)
Aineq = zeros(m,2*n*m);
bineq = zeros(m,1);
for j = 1:m
Aineq(j,j:m:(n-1)*m+j) = 1.0;
bineq(j) = bound_ones;
end
%
%Integer constraints
%Define bij as integers
intcon = 1:n*m;
%
%Bound constraints
%0 <= bij <= 1 and cij = aij - bij >= 0
lb = zeros(2*n*m,1);
ub = [ones(n*m,1);Inf*ones(n*m,1)];
%
% Call intlinprog
[x,fval,exitflag,output] = intlinprog(f,intcon,Aineq,bineq,Aeq,beq,lb,ub);
%
% s + fval should equal n if x is a solution
n
s + fval
if exitflag == 1
B = x(1:n*m);
B = reshape(B,m,n).';
C = x(n*m+1:2*n*m);
C = reshape(C,m,n).';
% Check constraints
any(C~=A-B,'All')
any(C<0,'All')
any((0>B)|(B>1),'All')
any(sum(B,2)~=1)
any(sum(B,1)>bound_ones)
else
display('Matrix B does not exist')
end
B
4 Kommentare
Torsten
am 18 Sep. 2022
Bearbeitet: Torsten
am 18 Sep. 2022
%rng('default')
% n = 100; % number of rows of A
% m = 60; % number of columns of A
n = 1500; % number of rows of A
m = 1000; % number of columns of A
bound_ones = 5; % bound for column sums of B
A = randi([0 1],n,m); % generate random binary matrix
%
% Usually, nothing needs to be changed after this line
if any(sum(A,2)==0)
display('Matrix A inappropriate.');
return
end
%
% Objective function
% min: sum_ij bij
f = ones(n*m,1);
% Alternatively:
% Only search for feasible point (objective doesn't matter)
%f = zeros(n*m,1);
%
% Equality constraints
%sum_j bij = 1 (1 <= i <= n)
ir = zeros(n*m,1);
ic = zeros(n*m,1);
v = zeros(n*m,1);
for i = 1:n
ir((i-1)*m+1:i*m) = i;
ic((i-1)*m+1:i*m) = (i-1)*m+1:i*m;
v((i-1)*m+1:i*m) = 1.0;
end
Aeq = sparse(ir,ic,v,n,n*m);
beq = ones(n,1);
%Aeq = zeros(n,n*m);
%beq = zeros(n,1);
%for i = 1:n
% Aeq(i,(i-1)*m+1:i*m) = 1.0;
% beq(i) = 1.0;
%end
%
%Inequality constraints
%sum_i bij <= bound_ones (1 <= j <= m)
ir = zeros(n*m,1);
ic = zeros(n*m,1);
v = zeros(n*m,1);
for j = 1:m
ir(j:m:(n-1)*m+j) = j;
ic(j:m:(n-1)*m+j) = j:m:(n-1)*m+j;
v(j:m:(n-1)*m+j) = 1.0;
end
Aineq = sparse(ir,ic,v,m,n*m);
bineq = bound_ones*ones(m,1);
%Aineq = zeros(m,n*m);
%bineq = zeros(m,1);
%for j = 1:m
% Aineq(j,j:m:(n-1)*m+j) = 1.0;
% bineq(j) = bound_ones;
%end
%
%Integer constraints
%Define bij as integers
intcon = 1:n*m;
%
%Bound constraints
%0 <= b_ij <= a_ij
lb = zeros(n*m,1);
ub = reshape(A.',[],1);
%
% Call intlinprog
[x,fval,exitflag,output] = intlinprog(f,intcon,Aineq,bineq,Aeq,beq,lb,ub);
%
% fval should equal n if x is a solution
n
fval
if exitflag == 1
B = reshape(x,m,n).';
% Check constraints
any(B>A,'All')
any((B<0)|(B>1),'All')
any(sum(B,2)~=1)
any(sum(B,1)>bound_ones)
else
display('Matrix B does not exist')
end
B
Siehe auch
Kategorien
Mehr zu Quadratic Programming and Cone Programming finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!