# How can I find the angle between two vectors, including directional information?

376 Ansichten (letzte 30 Tage)
Sebastian Echeverri am 24 Feb. 2015
Bearbeitet: AKASH KUMAR am 20 Mai 2024 um 3:24
Hello, I am a graduate student, and I am working on a script that tracks the position of animals during a courtship. I have position data in the form of XY coordinates from two points on each animal's body taken from top down filming. I use these two points to create a vector that defines the animal's orientation. My script needs to calculate the angle between these two vectors, but also include directional information - IE, go from -180 through 0 to 180 degrees, depending on where the vectors are placed (see image).
This is the code that I currently have. It gives me the desired angle (I believe), but is NOT directional. 60 degrees to either side spits out as 60 degrees no matter which it is.
##### 1 Kommentar-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden
AKASH KUMAR am 19 Mai 2024 um 18:29
Bearbeitet: AKASH KUMAR am 20 Mai 2024 um 3:24
based on above equation, the angle between two vectors in the range of 0 to 2pi can be found using atan2(Y,X), as described by others in the earlier comments.

Melden Sie sich an, um zu kommentieren.

### Akzeptierte Antwort

Roger Stafford am 24 Feb. 2015
Bearbeitet: Roger Stafford am 24 Feb. 2015
If v1 = [x1,y1] and v2 = [x2,y2] are the components of two vectors, then
a = atan2d(x1*y2-y1*x2,x1*x2+y1*y2);
gives the angle in degrees between the vectors as measured in a counterclockwise direction from v1 to v2. If that angle would exceed 180 degrees, then the angle is measured in the clockwise direction but given a negative value. In other words, the output of 'atan2d' always ranges from -180 to +180 degrees.
One further observation: Besides the greater range of 'atan2d' as compared with 'acosd', the former does not suffer the inaccuracies that occur with 'acosd' for angles near zero and 180 degrees.
##### 14 Kommentare12 ältere Kommentare anzeigen12 ältere Kommentare ausblenden
Cenker Canbulut am 31 Jul. 2020
Bearbeitet: Cenker Canbulut am 3 Aug. 2020
Executed formula and works like charm! Thank you math! Thank you Roger Stafford!
Seth Wagenman am 31 Jul. 2020
Here is the link to my file developed in response to the same need in the 3-D case:

Melden Sie sich an, um zu kommentieren.

### Weitere Antworten (2)

Yashar Farajpour am 17 Apr. 2020
Bearbeitet: Yashar Farajpour am 17 Apr. 2020
You can use subspace function.
A = [x1,y1,z1];
B = [x2,y2,z2];
Angle = subspace(A',B')
%transposed! they must be column vectors
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

shantanu kumar am 19 Dez. 2022
a = atan2d(x1*y2-y1*x2,x1*x2+y1*y2);
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Kategorien

Mehr zu General Applications finden Sie in Help Center und File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by