High amplitude in the solution of seconde order differential equation using ode 45
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a code (see below) that solve the second order differential equation. As a output it gives the position and velocity as a function of time. Now I want to plot this position vs time for several values of omega ranging from 0.1 to 1.5. But there are some cases when omega=0.48,0.5,0.85 it gives the solution of position of amplitude 10^91 (diverge solution). I guess this is due to some error but I can not find the error. For other cases of omega it gives consistent result (oscillating behaviour). How to overcome this errors for above omegas. Please help regarding this. I am new to MATLAB.
%% MAIN PROGRAM %%
t=linspace(0,10000,5000);
y0=[1 0];
omega=0.85;
[tsol, ysol]=ode45(@(t,y0) firstodefun4(t,y0,omega), t, y0, omega);
position=ysol(:,1);
velocity=ysol(:,2);
%% FUNCTION DEFINITION%%
function dy=firstodefun4(t,y0,omega)
F=1;gamma=0.01;omega0=1;
kappa=0.15;
dy=zeros(2,1);
dy(1)=y0(2);
dy(2)=2*F*sin(omega*t)-2*gamma*y0(2)-omega0^2*(1+4*kappa*sin(2*omega*t))*y0(1);
end
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!