Hi! It is my understanding that you have the training data, which is a cell array that contains 9 matrices, each with dimensions 5x324.
To normalize each row of these matrices individually without altering the overall structure of the data, iterate over each matrix in the cell array, normalize the rows of each matrix, and store the normalized matrices back into the cell array.
Refer to the example code below for better understanding.
%generating random data.
dataTrain = cell(1,9);
for i = 1 : size(dataTrain,2)
%creating 5 signals with 324 steps.
dataTrain{i} = randi([1 100], 5,324);
end
disp("Before Normalization");
Before Normalization
disp(dataTrain{1});
Columns 1 through 33
61 57 58 32 97 83 59 17 32 62 93 13 48 20 65 68 14 62 93 67 89 95 95 2 88 53 88 18 56 80 67 23 71
95 67 3 70 20 79 36 77 61 69 2 89 97 22 53 88 83 50 97 2 16 51 85 12 44 74 13 77 70 62 92 14 95
96 48 99 9 35 86 32 96 27 90 67 13 23 68 46 97 11 99 86 35 73 40 98 49 61 64 9 34 37 6 57 52 8
57 47 52 5 57 8 24 47 2 76 73 44 57 68 48 18 77 22 79 21 67 76 55 11 38 15 78 39 84 65 50 76 20
38 31 79 1 17 56 5 52 29 82 88 48 52 16 81 80 60 15 86 70 81 60 50 71 72 4 16 97 24 47 18 21 37
Columns 34 through 66
100 15 96 72 89 30 98 3 93 10 46 64 94 5 87 84 18 58 70 82 37 39 85 3 56 56 23 53 64 88 45 42 3
73 13 60 37 91 76 96 48 8 84 5 67 96 100 94 37 21 51 38 13 42 96 18 8 19 28 97 17 19 59 51 4 31
23 45 88 36 17 25 84 74 53 11 45 95 77 39 90 67 81 33 52 57 86 35 88 44 83 33 24 89 42 16 77 81 60
11 51 39 3 99 19 7 90 24 95 1 65 46 83 60 97 89 27 91 75 75 64 75 90 57 73 91 79 42 47 56 6 68
32 95 86 42 91 57 50 76 22 76 100 34 93 97 91 93 71 90 85 37 8 5 3 29 73 58 90 67 76 62 4 29 27
Columns 67 through 99
99 34 23 78 15 47 81 3 92 51 21 72 28 49 4 37 86 97 41 31 14 58 12 8 20 74 64 78 73 86 34 47 55
25 35 99 21 86 39 68 88 46 34 94 33 63 24 26 54 23 5 96 38 99 90 84 72 9 11 95 66 31 80 21 24 18
18 27 87 58 81 12 57 12 2 91 37 1 42 51 11 36 6 78 84 76 1 32 12 5 57 58 69 65 67 1 90 48 55
75 50 51 54 77 18 84 78 53 77 77 73 95 2 29 34 15 30 31 53 65 99 19 77 96 88 11 79 51 74 87 76 90
61 12 75 62 32 64 92 100 93 20 94 42 27 75 84 16 95 91 55 58 90 77 81 89 19 80 90 57 53 52 39 89 92
Columns 100 through 132
19 98 37 99 42 76 1 24 2 69 40 12 11 83 68 8 46 49 37 94 64 94 64 28 17 54 1 58 46 34 34 81 29
59 34 93 88 60 45 64 9 18 39 60 83 6 66 37 92 23 40 53 24 95 28 87 8 87 78 80 29 84 91 58 17 70
53 72 86 96 10 40 57 96 45 62 63 27 39 69 57 25 90 37 93 79 56 28 34 21 89 83 30 73 55 70 53 92 63
69 25 95 72 16 23 75 21 16 67 6 69 74 50 69 47 2 53 25 42 93 3 60 41 21 34 1 37 27 89 31 14 99
100 79 35 67 67 100 90 74 93 1 23 67 39 41 86 35 38 59 43 83 78 39 29 26 70 68 45 92 35 48 89 52 61
Columns 133 through 165
82 17 50 83 3 48 85 27 100 48 84 38 68 75 83 93 24 97 63 79 13 54 40 21 96 11 23 27 13 100 48 62 48
10 93 84 99 93 88 11 98 100 87 20 27 90 80 68 29 8 62 52 37 57 70 79 43 39 14 60 47 87 9 79 43 65
1 6 79 6 27 100 75 14 68 44 2 22 82 54 13 15 48 95 29 9 73 2 80 17 45 7 70 91 84 71 75 63 91
11 27 49 96 12 14 21 9 72 74 57 39 64 58 24 23 61 51 83 40 10 78 93 69 96 22 60 19 14 17 98 79 81
15 86 53 28 53 48 21 72 33 18 6 10 90 62 84 3 34 63 100 32 50 21 55 82 98 31 16 11 94 11 86 1 90
Columns 166 through 198
46 72 4 10 87 47 18 67 61 22 72 61 73 69 77 87 27 40 9 61 51 52 39 84 95 69 73 43 20 63 63 76 12
100 79 40 3 17 99 6 61 33 30 50 59 14 9 34 44 27 17 94 91 78 17 66 6 42 80 19 80 5 27 29 62 85
23 52 6 28 64 13 3 6 18 24 33 76 70 100 21 9 59 82 6 87 46 18 91 33 5 94 78 96 6 77 66 30 78
100 99 41 62 17 80 69 47 13 82 82 83 94 38 91 32 85 68 41 38 13 73 75 46 35 15 71 30 7 63 40 8 48
51 3 82 95 46 7 9 22 58 30 86 18 83 45 47 66 36 50 75 79 83 91 3 6 95 40 53 61 12 40 88 95 31
Columns 199 through 231
83 17 49 32 26 68 29 81 74 75 15 10 79 18 58 59 77 40 66 64 63 80 48 94 43 73 68 60 29 94 10 93 10
89 3 3 19 48 55 82 65 96 39 57 96 42 44 8 3 68 79 91 15 16 95 41 43 91 93 66 93 83 46 30 42 16
33 3 93 2 5 33 62 50 51 60 11 96 19 58 60 23 56 100 11 82 25 28 13 87 39 62 90 59 1 64 98 93 66
76 6 46 90 70 77 53 33 88 77 94 71 41 93 18 57 11 66 61 70 35 81 57 31 6 58 80 55 37 69 61 63 33
75 43 14 41 80 60 13 85 21 5 83 70 74 23 53 82 89 56 46 51 40 100 11 75 6 84 99 50 39 6 30 58 17
Columns 232 through 264
53 16 84 75 41 7 77 37 3 74 45 57 36 99 63 28 79 49 95 79 51 64 64 21 12 53 95 67 43 41 65 2 4
84 21 96 89 91 71 67 83 90 93 64 30 78 91 98 90 66 61 35 66 17 69 76 55 57 76 89 3 22 75 96 11 49
56 3 28 49 17 22 89 12 34 57 78 80 99 85 2 86 87 54 15 22 28 17 40 2 1 16 14 52 24 60 95 21 93
69 54 32 59 10 28 41 53 53 68 100 84 94 7 9 79 29 89 68 13 66 62 58 5 29 14 12 50 46 78 63 27 8
28 70 89 96 12 97 81 16 100 47 40 28 19 78 34 25 19 5 50 55 20 46 22 23 2 80 43 16 18 93 21 73 67
Columns 265 through 297
35 42 77 42 30 44 13 34 39 52 79 76 10 100 7 43 83 5 44 86 24 69 92 88 53 14 75 24 16 6 19 45 10
63 97 16 30 17 27 87 27 74 19 68 96 34 45 18 12 37 97 72 63 84 90 20 49 19 88 38 7 79 73 36 62 30
50 22 53 47 16 73 67 64 43 81 82 50 72 48 49 64 79 54 52 48 69 55 31 94 16 32 41 100 45 13 43 36 72
53 78 34 40 47 55 72 35 91 60 58 28 58 30 74 84 32 12 77 10 47 15 100 81 42 38 44 16 35 66 35 10 49
36 45 53 51 25 31 90 92 52 24 20 52 6 93 12 73 19 45 60 14 67 63 76 43 95 53 6 55 63 32 1 69 15
Columns 298 through 324
59 23 80 63 33 25 68 55 75 8 91 95 77 94 46 8 8 61 24 59 88 7 83 88 84 63 1
5 70 57 27 84 63 62 76 12 81 76 38 98 72 34 18 56 34 52 78 85 29 65 25 15 64 68
15 87 5 31 9 57 35 13 56 95 75 78 52 19 54 65 80 98 88 65 3 47 18 53 18 45 43
80 97 30 42 1 32 32 62 75 12 53 37 21 74 21 8 56 89 26 13 84 75 26 8 10 15 91
90 17 88 57 34 76 21 2 1 53 63 76 64 99 21 70 39 53 47 46 60 28 5 79 24 54 81
%Normalizing the training data.
for i = 1 : size(dataTrain,2)
%creating 5 signals with 324 steps.
raw_data = dataTrain{i};
normalized_data = normalize(raw_data,2,"range");
dataTrain{i} = normalized_data;
end
disp("After Normalization");
After Normalization
disp(dataTrain{1});
Columns 1 through 19
0.6061 0.5657 0.5758 0.3131 0.9697 0.8283 0.5859 0.1616 0.3131 0.6162 0.9293 0.1212 0.4747 0.1919 0.6465 0.6768 0.1313 0.6162 0.9293
0.9490 0.6633 0.0102 0.6939 0.1837 0.7857 0.3469 0.7653 0.6020 0.6837 0 0.8878 0.9694 0.2041 0.5204 0.8776 0.8265 0.4898 0.9694
0.9596 0.4747 0.9899 0.0808 0.3434 0.8586 0.3131 0.9596 0.2626 0.8990 0.6667 0.1212 0.2222 0.6768 0.4545 0.9697 0.1010 0.9899 0.8586
0.5657 0.4646 0.5152 0.0404 0.5657 0.0707 0.2323 0.4646 0.0101 0.7576 0.7273 0.4343 0.5657 0.6768 0.4747 0.1717 0.7677 0.2121 0.7879
0.3737 0.3030 0.7879 0 0.1616 0.5556 0.0404 0.5152 0.2828 0.8182 0.8788 0.4747 0.5152 0.1515 0.8081 0.7980 0.5960 0.1414 0.8586
Columns 20 through 38
0.6667 0.8889 0.9495 0.9495 0.0101 0.8788 0.5253 0.8788 0.1717 0.5556 0.7980 0.6667 0.2222 0.7071 1.0000 0.1414 0.9596 0.7172 0.8889
0 0.1429 0.5000 0.8469 0.1020 0.4286 0.7347 0.1122 0.7653 0.6939 0.6122 0.9184 0.1224 0.9490 0.7245 0.1122 0.5918 0.3571 0.9082
0.3434 0.7273 0.3939 0.9798 0.4848 0.6061 0.6364 0.0808 0.3333 0.3636 0.0505 0.5657 0.5152 0.0707 0.2222 0.4444 0.8788 0.3535 0.1616
0.2020 0.6667 0.7576 0.5455 0.1010 0.3737 0.1414 0.7778 0.3838 0.8384 0.6465 0.4949 0.7576 0.1919 0.1010 0.5051 0.3838 0.0202 0.9899
0.6970 0.8081 0.5960 0.4949 0.7071 0.7172 0.0303 0.1515 0.9697 0.2323 0.4646 0.1717 0.2020 0.3636 0.3131 0.9495 0.8586 0.4141 0.9091
Columns 39 through 57
0.2929 0.9798 0.0202 0.9293 0.0909 0.4545 0.6364 0.9394 0.0404 0.8687 0.8384 0.1717 0.5758 0.6970 0.8182 0.3636 0.3838 0.8485 0.0202
0.7551 0.9592 0.4694 0.0612 0.8367 0.0306 0.6633 0.9592 1.0000 0.9388 0.3571 0.1939 0.5000 0.3673 0.1122 0.4082 0.9592 0.1633 0.0612
0.2424 0.8384 0.7374 0.5253 0.1010 0.4444 0.9495 0.7677 0.3838 0.8990 0.6667 0.8081 0.3232 0.5152 0.5657 0.8586 0.3434 0.8788 0.4343
0.1818 0.0606 0.8990 0.2323 0.9495 0 0.6465 0.4545 0.8283 0.5960 0.9697 0.8889 0.2626 0.9091 0.7475 0.7475 0.6364 0.7475 0.8990
0.5657 0.4949 0.7576 0.2121 0.7576 1.0000 0.3333 0.9293 0.9697 0.9091 0.9293 0.7071 0.8990 0.8485 0.3636 0.0707 0.0404 0.0202 0.2828
Columns 58 through 76
0.5556 0.5556 0.2222 0.5253 0.6364 0.8788 0.4444 0.4141 0.0202 0.9899 0.3333 0.2222 0.7778 0.1414 0.4646 0.8081 0.0202 0.9192 0.5051
0.1735 0.2653 0.9694 0.1531 0.1735 0.5816 0.5000 0.0204 0.2959 0.2347 0.3367 0.9898 0.1939 0.8571 0.3776 0.6735 0.8776 0.4490 0.3265
0.8283 0.3232 0.2323 0.8889 0.4141 0.1515 0.7677 0.8081 0.5960 0.1717 0.2626 0.8687 0.5758 0.8081 0.1111 0.5657 0.1111 0.0101 0.9091
0.5657 0.7273 0.9091 0.7879 0.4141 0.4646 0.5556 0.0505 0.6768 0.7475 0.4949 0.5051 0.5354 0.7677 0.1717 0.8384 0.7778 0.5253 0.7677
0.7273 0.5758 0.8990 0.6667 0.7576 0.6162 0.0303 0.2828 0.2626 0.6061 0.1111 0.7475 0.6162 0.3131 0.6364 0.9192 1.0000 0.9293 0.1919
Columns 77 through 95
0.2020 0.7172 0.2727 0.4848 0.0303 0.3636 0.8586 0.9697 0.4040 0.3030 0.1313 0.5758 0.1111 0.0707 0.1919 0.7374 0.6364 0.7778 0.7273
0.9388 0.3163 0.6224 0.2245 0.2449 0.5306 0.2143 0.0306 0.9592 0.3673 0.9898 0.8980 0.8367 0.7143 0.0714 0.0918 0.9490 0.6531 0.2959
0.3636 0 0.4141 0.5051 0.1010 0.3535 0.0505 0.7778 0.8384 0.7576 0 0.3131 0.1111 0.0404 0.5657 0.5758 0.6869 0.6465 0.6667
0.7677 0.7273 0.9495 0.0101 0.2828 0.3333 0.1414 0.2929 0.3030 0.5253 0.6465 0.9899 0.1818 0.7677 0.9596 0.8788 0.1010 0.7879 0.5051
0.9394 0.4141 0.2626 0.7475 0.8384 0.1515 0.9495 0.9091 0.5455 0.5758 0.8990 0.7677 0.8081 0.8889 0.1818 0.7980 0.8990 0.5657 0.5253
Columns 96 through 114
0.8586 0.3333 0.4646 0.5455 0.1818 0.9798 0.3636 0.9899 0.4141 0.7576 0 0.2323 0.0101 0.6869 0.3939 0.1111 0.1010 0.8283 0.6768
0.7959 0.1939 0.2245 0.1633 0.5816 0.3265 0.9286 0.8776 0.5918 0.4388 0.6327 0.0714 0.1633 0.3776 0.5918 0.8265 0.0408 0.6531 0.3571
0 0.8990 0.4747 0.5455 0.5253 0.7172 0.8586 0.9596 0.0909 0.3939 0.5657 0.9596 0.4444 0.6162 0.6263 0.2626 0.3838 0.6869 0.5657
0.7374 0.8687 0.7576 0.8990 0.6869 0.2424 0.9495 0.7172 0.1515 0.2222 0.7475 0.2020 0.1515 0.6667 0.0505 0.6869 0.7374 0.4949 0.6869
0.5152 0.3838 0.8889 0.9192 1.0000 0.7879 0.3434 0.6667 0.6667 1.0000 0.8990 0.7374 0.9293 0 0.2222 0.6667 0.3838 0.4040 0.8586
Columns 115 through 133
0.0707 0.4545 0.4848 0.3636 0.9394 0.6364 0.9394 0.6364 0.2727 0.1616 0.5354 0 0.5758 0.4545 0.3333 0.3333 0.8081 0.2828 0.8182
0.9184 0.2143 0.3878 0.5204 0.2245 0.9490 0.2653 0.8673 0.0612 0.8673 0.7755 0.7959 0.2755 0.8367 0.9082 0.5714 0.1531 0.6939 0.0816
0.2424 0.8990 0.3636 0.9293 0.7879 0.5556 0.2727 0.3333 0.2020 0.8889 0.8283 0.2929 0.7273 0.5455 0.6970 0.5253 0.9192 0.6263 0
0.4646 0.0101 0.5253 0.2424 0.4141 0.9293 0.0202 0.5960 0.4040 0.2020 0.3333 0 0.3636 0.2626 0.8889 0.3030 0.1313 0.9899 0.1010
0.3434 0.3737 0.5859 0.4242 0.8283 0.7778 0.3838 0.2828 0.2525 0.6970 0.6768 0.4444 0.9192 0.3434 0.4747 0.8889 0.5152 0.6061 0.1414
Columns 134 through 152
0.1616 0.4949 0.8283 0.0202 0.4747 0.8485 0.2626 1.0000 0.4747 0.8384 0.3737 0.6768 0.7475 0.8283 0.9293 0.2323 0.9697 0.6263 0.7879
0.9286 0.8367 0.9898 0.9286 0.8776 0.0918 0.9796 1.0000 0.8673 0.1837 0.2551 0.8980 0.7959 0.6735 0.2755 0.0612 0.6122 0.5102 0.3571
0.0505 0.7879 0.0505 0.2626 1.0000 0.7475 0.1313 0.6768 0.4343 0.0101 0.2121 0.8182 0.5354 0.1212 0.1414 0.4747 0.9495 0.2828 0.0808
0.2626 0.4848 0.9596 0.1111 0.1313 0.2020 0.0808 0.7172 0.7374 0.5657 0.3838 0.6364 0.5758 0.2323 0.2222 0.6061 0.5051 0.8283 0.3939
0.8586 0.5253 0.2727 0.5253 0.4747 0.2020 0.7172 0.3232 0.1717 0.0505 0.0909 0.8990 0.6162 0.8384 0.0202 0.3333 0.6263 1.0000 0.3131
Columns 153 through 171
0.1212 0.5354 0.3939 0.2020 0.9596 0.1010 0.2222 0.2626 0.1212 1.0000 0.4747 0.6162 0.4747 0.4545 0.7172 0.0303 0.0909 0.8687 0.4646
0.5612 0.6939 0.7857 0.4184 0.3776 0.1224 0.5918 0.4592 0.8673 0.0714 0.7857 0.4184 0.6429 1.0000 0.7857 0.3878 0.0102 0.1531 0.9898
0.7273 0.0101 0.7980 0.1616 0.4444 0.0606 0.6970 0.9091 0.8384 0.7071 0.7475 0.6263 0.9091 0.2222 0.5152 0.0505 0.2727 0.6364 0.1212
0.0909 0.7778 0.9293 0.6869 0.9596 0.2121 0.5960 0.1818 0.1313 0.1616 0.9798 0.7879 0.8081 1.0000 0.9899 0.4040 0.6162 0.1616 0.7980
0.4949 0.2020 0.5455 0.8182 0.9798 0.3030 0.1515 0.1010 0.9394 0.1010 0.8586 0 0.8990 0.5051 0.0202 0.8182 0.9495 0.4545 0.0606
Columns 172 through 190
0.1717 0.6667 0.6061 0.2121 0.7172 0.6061 0.7273 0.6869 0.7677 0.8687 0.2626 0.3939 0.0808 0.6061 0.5051 0.5152 0.3838 0.8384 0.9495
0.0408 0.6020 0.3163 0.2857 0.4898 0.5816 0.1224 0.0714 0.3265 0.4286 0.2551 0.1531 0.9388 0.9082 0.7755 0.1531 0.6531 0.0408 0.4082
0.0202 0.0505 0.1717 0.2323 0.3232 0.7576 0.6970 1.0000 0.2020 0.0808 0.5859 0.8182 0.0505 0.8687 0.4545 0.1717 0.9091 0.3232 0.0404
0.6869 0.4646 0.1212 0.8182 0.8182 0.8283 0.9394 0.3737 0.9091 0.3131 0.8485 0.6768 0.4040 0.3737 0.1212 0.7273 0.7475 0.4545 0.3434
0.0808 0.2121 0.5758 0.2929 0.8586 0.1717 0.8283 0.4444 0.4646 0.6566 0.3535 0.4949 0.7475 0.7879 0.8283 0.9091 0.0202 0.0505 0.9495
Columns 191 through 209
0.6869 0.7273 0.4242 0.1919 0.6263 0.6263 0.7576 0.1111 0.8283 0.1616 0.4848 0.3131 0.2525 0.6768 0.2828 0.8081 0.7374 0.7475 0.1414
0.7959 0.1735 0.7959 0.0306 0.2551 0.2755 0.6122 0.8469 0.8878 0.0102 0.0102 0.1735 0.4694 0.5408 0.8163 0.6429 0.9592 0.3776 0.5612
0.9394 0.7778 0.9596 0.0505 0.7677 0.6566 0.2929 0.7778 0.3232 0.0202 0.9293 0.0101 0.0404 0.3232 0.6162 0.4949 0.5051 0.5960 0.1010
0.1414 0.7071 0.2929 0.0606 0.6263 0.3939 0.0707 0.4747 0.7576 0.0505 0.4545 0.8990 0.6970 0.7677 0.5253 0.3232 0.8788 0.7677 0.9394
0.3939 0.5253 0.6061 0.1111 0.3939 0.8788 0.9495 0.3030 0.7475 0.4242 0.1313 0.4040 0.7980 0.5960 0.1212 0.8485 0.2020 0.0404 0.8283
Columns 210 through 228
0.0909 0.7879 0.1717 0.5758 0.5859 0.7677 0.3939 0.6566 0.6364 0.6263 0.7980 0.4747 0.9394 0.4242 0.7273 0.6768 0.5960 0.2828 0.9394
0.9592 0.4082 0.4286 0.0612 0.0102 0.6735 0.7857 0.9082 0.1327 0.1429 0.9490 0.3980 0.4184 0.9082 0.9286 0.6531 0.9286 0.8265 0.4490
0.9596 0.1818 0.5758 0.5960 0.2222 0.5556 1.0000 0.1010 0.8182 0.2424 0.2727 0.1212 0.8687 0.3838 0.6162 0.8990 0.5859 0 0.6364
0.7071 0.4040 0.9293 0.1717 0.5657 0.1010 0.6566 0.6061 0.6970 0.3434 0.8081 0.5657 0.3030 0.0505 0.5758 0.7980 0.5455 0.3636 0.6869
0.6970 0.7374 0.2222 0.5253 0.8182 0.8889 0.5556 0.4545 0.5051 0.3939 1.0000 0.1010 0.7475 0.0505 0.8384 0.9899 0.4949 0.3838 0.0505
Columns 229 through 247
0.0909 0.9293 0.0909 0.5253 0.1515 0.8384 0.7475 0.4040 0.0606 0.7677 0.3636 0.0202 0.7374 0.4444 0.5657 0.3535 0.9899 0.6263 0.2727
0.2857 0.4082 0.1429 0.8367 0.1939 0.9592 0.8878 0.9082 0.7041 0.6633 0.8265 0.8980 0.9286 0.6327 0.2857 0.7755 0.9082 0.9796 0.8980
0.9798 0.9293 0.6566 0.5556 0.0202 0.2727 0.4848 0.1616 0.2121 0.8889 0.1111 0.3333 0.5657 0.7778 0.7980 0.9899 0.8485 0.0101 0.8586
0.6061 0.6263 0.3232 0.6869 0.5354 0.3131 0.5859 0.0909 0.2727 0.4040 0.5253 0.5253 0.6768 1.0000 0.8384 0.9394 0.0606 0.0808 0.7879
0.2929 0.5758 0.1616 0.2727 0.6970 0.8889 0.9596 0.1111 0.9697 0.8081 0.1515 1.0000 0.4646 0.3939 0.2727 0.1818 0.7778 0.3333 0.2424
Columns 248 through 266
0.7879 0.4848 0.9495 0.7879 0.5051 0.6364 0.6364 0.2020 0.1111 0.5253 0.9495 0.6667 0.4242 0.4040 0.6465 0.0101 0.0303 0.3434 0.4141
0.6531 0.6020 0.3367 0.6531 0.1531 0.6837 0.7551 0.5408 0.5612 0.7551 0.8878 0.0102 0.2041 0.7449 0.9592 0.0918 0.4796 0.6224 0.9694
0.8687 0.5354 0.1414 0.2121 0.2727 0.1616 0.3939 0.0101 0 0.1515 0.1313 0.5152 0.2323 0.5960 0.9495 0.2020 0.9293 0.4949 0.2121
0.2828 0.8889 0.6768 0.1212 0.6566 0.6162 0.5758 0.0404 0.2828 0.1313 0.1111 0.4949 0.4545 0.7778 0.6263 0.2626 0.0707 0.5253 0.7778
0.1818 0.0404 0.4949 0.5455 0.1919 0.4545 0.2121 0.2222 0.0101 0.7980 0.4242 0.1515 0.1717 0.9293 0.2020 0.7273 0.6667 0.3535 0.4444
Columns 267 through 285
0.7677 0.4141 0.2929 0.4343 0.1212 0.3333 0.3838 0.5152 0.7879 0.7576 0.0909 1.0000 0.0606 0.4242 0.8283 0.0404 0.4343 0.8586 0.2323
0.1429 0.2857 0.1531 0.2551 0.8673 0.2551 0.7347 0.1735 0.6735 0.9592 0.3265 0.4388 0.1633 0.1020 0.3571 0.9694 0.7143 0.6224 0.8367
0.5253 0.4646 0.1515 0.7273 0.6667 0.6364 0.4242 0.8081 0.8182 0.4949 0.7172 0.4747 0.4848 0.6364 0.7879 0.5354 0.5152 0.4747 0.6869
0.3333 0.3939 0.4646 0.5455 0.7172 0.3434 0.9091 0.5960 0.5758 0.2727 0.5758 0.2929 0.7374 0.8384 0.3131 0.1111 0.7677 0.0909 0.4646
0.5253 0.5051 0.2424 0.3030 0.8990 0.9192 0.5152 0.2323 0.1919 0.5152 0.0505 0.9293 0.1111 0.7273 0.1818 0.4444 0.5960 0.1313 0.6667
Columns 286 through 304
0.6869 0.9192 0.8788 0.5253 0.1313 0.7475 0.2323 0.1515 0.0505 0.1818 0.4444 0.0909 0.5859 0.2222 0.7980 0.6263 0.3232 0.2424 0.6768
0.8980 0.1837 0.4796 0.1735 0.8776 0.3673 0.0510 0.7857 0.7245 0.3469 0.6122 0.2857 0.0306 0.6939 0.5612 0.2551 0.8367 0.6224 0.6122
0.5455 0.3030 0.9394 0.1515 0.3131 0.4040 1.0000 0.4444 0.1212 0.4242 0.3535 0.7172 0.1414 0.8687 0.0404 0.3030 0.0808 0.5657 0.3434
0.1414 1.0000 0.8081 0.4141 0.3737 0.4343 0.1515 0.3434 0.6566 0.3434 0.0909 0.4848 0.7980 0.9697 0.2929 0.4141 0 0.3131 0.3131
0.6263 0.7576 0.4242 0.9495 0.5253 0.0505 0.5455 0.6263 0.3131 0 0.6869 0.1414 0.8990 0.1616 0.8788 0.5657 0.3333 0.7576 0.2020
Columns 305 through 323
0.5455 0.7475 0.0707 0.9091 0.9495 0.7677 0.9394 0.4545 0.0707 0.0707 0.6061 0.2323 0.5859 0.8788 0.0606 0.8283 0.8788 0.8384 0.6263
0.7551 0.1020 0.8061 0.7551 0.3673 0.9796 0.7143 0.3265 0.1633 0.5510 0.3265 0.5102 0.7755 0.8469 0.2755 0.6429 0.2347 0.1327 0.6327
0.1212 0.5556 0.9495 0.7475 0.7778 0.5152 0.1818 0.5354 0.6465 0.7980 0.9798 0.8788 0.6465 0.0202 0.4646 0.1717 0.5253 0.1717 0.4444
0.6162 0.7475 0.1111 0.5253 0.3636 0.2020 0.7374 0.2020 0.0707 0.5556 0.8889 0.2525 0.1212 0.8384 0.7475 0.2525 0.0707 0.0909 0.1414
0.0101 0 0.5253 0.6263 0.7576 0.6364 0.9899 0.2020 0.6970 0.3838 0.5253 0.4646 0.4545 0.5960 0.2727 0.0404 0.7879 0.2323 0.5354
Column 324
0
0.6735
0.4242
0.9091
0.8081
To learn about the "normalize" function and its different parameter options, please refer to the link provided below. It will provide detailed information on how to use the "normalize" function with different parameter settings to achieve different types of normalization.
Hope this helps.