fmincon nonlinear inequality constraint
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I do a maximum likelihood estimation using fmincon. My code requires doing a Choleski decomposition to the matrix: A=[betas(7) betas(9); betas(9) betas(8)]. Choleski decomposition requires the matrix A to be positive definite. Because A is a 2x2 matrix, positive definiteness require two conditions:
- beta(7)>0
- beta(7)*beta(8)-beta(9)^2>0
I set the lowerbound of beta(7) to be 0. To satisfy the second nonlinear inequality constraint, I wrote a function
function [c,ceq]=mycons(betas)
ceq=[];
c=-(betas(7)*betas(8)-betas(9)^2);
end
Then I run my fmincon function
[b_out,fval] =fmincon(@(betas)mainlf3(betas,numobs, p),betas,[],[],[],[], lb, ub,@(betas)mycons(betas), options1);
However, the code does not satisfy the nonlinear constraint. It gives me the error:
Error using chol
Matrix must be positive definite.
Can anyone see what I'm doing wrong? Thank you.
0 Kommentare
Akzeptierte Antwort
Matt J
am 9 Aug. 2022
Bearbeitet: Matt J
am 9 Aug. 2022
The nonlinear constraints are not obeyed at all iterations. At iterations where they are not obeyed, chol() will give you an error for obvious reasons.
I suggest you parametrize directly in terms of the Cholesky decomposition., i.e., Let L be an unknown matrix and set the constraint,
ceq=L*L'-[betas(7) betas(9); betas(9) betas(8)];
3 Kommentare
Matt J
am 9 Aug. 2022
Yes, L would be composed of unknowns in addition to beta.
L=[L1,0;
L2,L3];
Weitere Antworten (1)
Torsten
am 9 Aug. 2022
It is not guaranteed that the "test parameters" betas satisfy the constraints in each iteration of the optimization process.
So you should first check for positive definiteness before calling Chol. If not, enlarge the diagonal elements artificially by a certain amount.
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!