How to plot 3D plot from polar plot

15 Ansichten (letzte 30 Tage)
David Harra
David Harra am 9 Aug. 2022
Kommentiert: William Rose am 17 Aug. 2022
I am looking at plotting the the slowness profiles of Titinium (Inverser of velocity) by solving the christoffell equation.
I have managed to get a polar plot of this but would like to visualise this in 3d. For my polar plot I have done.
c11 = 162000000000;
c12=92000000000;
c44=47000000000;
c13= 69000000000;
c33= 181000000000;
c66= 35000000000
rho = 4430;
C=[c11,c12,c13,0,0,0;
c12,c11,c13,0,0,0;
c13,c13,c33,0,0,0;
0,0,0,c44,0,0;
0,0,0,0,c44,0;
0,0,0,0,0,c66];
phase_vel3=zeros(1,181);
r=0;
for theta=-pi:pi/180:pi
r=r+1;
n=[cos(theta),0,sin(theta)];
L_11=(C(1,1)*n(1)^2+C(6,6)*n(2)^2+C(5,5)*n(3)^2+2*C(1,6)*n(1)*n(2)+2*C(1,5)*n(1)*n(3)+2*C(5,6)*n(2)*n(3));
L_12=(C(1,6)*n(1)^2+C(2,6)*n(2)^2+C(4,5)*n(3)^2+(C(1,2)+C(6,6))*n(1)*n(2)+(C(1,4)+C(5,6))*n(1)*n(3)+(C(4,6)+C(2,5))*n(2)*n(3));
L_13=(C(1,5)*n(1)^2+C(4,6)*n(2)^2+C(3,5)*n(3)^2+(C(1,4)+C(5,6))*n(1)*n(2)+(C(1,3)+C(5,5))*n(1)*n(3)+(C(3,6)+C(4,5))*n(2)*n(3));
L_22=(C(6,6)*n(1)^2+C(2,2)*n(2)^2+C(4,4)*n(3)^2+2*C(2,6)*n(1)*n(2)+2*C(4,6)*n(1)*n(3)+2*C(2,4)*n(2)*n(3));
L_23=(C(5,6)*n(1)^2+C(2,4)*n(2)^2+C(3,4)*n(3)^2+(C(4,6)+C(2,5))*n(1)*n(2)+(C(3,6)+C(4,5))*n(1)*n(3)+(C(2,3)+C(4,4))*n(2)*n(3));
L_33=(C(5,5)*n(1)^2+C(4,4)*n(2)^2+C(3,3)*n(3)^2+2*C(4,5)*n(1)*n(2)+2*C(3,5)*n(1)*n(3)+2*C(3,4)*n(2)*n(3));
Christoffel_mat=[L_11, L_12, L_13;
L_12,L_22,L_23;
L_13,L_23,L_33];
[ev,d]=eig(Christoffel_mat);
% eigvecs = polarisation vectors
pl=ev(:,3);
% eigvals ~ slowness (phase)
phase_vel3(r)=sqrt(rho./d(3,3)); % quasi-longitudinal
r=0;
for theta=-pi:pi/180:pi
r=r+1;
n=[cos(theta),0,sin(theta)];
L_11=(C(1,1)*n(1)^2+C(6,6)*n(2)^2+C(5,5)*n(3)^2+2*C(1,6)*n(1)*n(2)+2*C(1,5)*n(1)*n(3)+2*C(5,6)*n(2)*n(3));
L_12=(C(1,6)*n(1)^2+C(2,6)*n(2)^2+C(4,5)*n(3)^2+(C(1,2)+C(6,6))*n(1)*n(2)+(C(1,4)+C(5,6))*n(1)*n(3)+(C(4,6)+C(2,5))*n(2)*n(3));
L_13=(C(1,5)*n(1)^2+C(4,6)*n(2)^2+C(3,5)*n(3)^2+(C(1,4)+C(5,6))*n(1)*n(2)+(C(1,3)+C(5,5))*n(1)*n(3)+(C(3,6)+C(4,5))*n(2)*n(3));
L_22=(C(6,6)*n(1)^2+C(2,2)*n(2)^2+C(4,4)*n(3)^2+2*C(2,6)*n(1)*n(2)+2*C(4,6)*n(1)*n(3)+2*C(2,4)*n(2)*n(3));
L_23=(C(5,6)*n(1)^2+C(2,4)*n(2)^2+C(3,4)*n(3)^2+(C(4,6)+C(2,5))*n(1)*n(2)+(C(3,6)+C(4,5))*n(1)*n(3)+(C(2,3)+C(4,4))*n(2)*n(3));
L_33=(C(5,5)*n(1)^2+C(4,4)*n(2)^2+C(3,3)*n(3)^2+2*C(4,5)*n(1)*n(2)+2*C(3,5)*n(1)*n(3)+2*C(3,4)*n(2)*n(3));
Christoffel_mat=[L_11, L_12, L_13;
L_12,L_22,L_23;
L_13,L_23,L_33];
[ev,d]=eig(Christoffel_mat);
% eigvecs = polarisation vectors
pl=ev(:,3);
% eigvals ~ slowness (phase)
phase_vel3(r)=sqrt(rho./d(3,3)); % quasi-longitudinal
figure
polar(0:pi/180:2*pi,1./phase_vel3)
Any assistance how to visualise this in 3d would be appreciated.
Thanks
Dave :)

Akzeptierte Antwort

William Rose
William Rose am 9 Aug. 2022
[moved this from Comment to Answer as I had originally intended]
Please post the simplest possible code fragment that clearly illustrates what you want to do. This is always a good idea, in order to raise the odss of getting a useful answer.
I cannot tell what you want to plot on the third dimension.
Matlab cannot directly plot in cylindrical or spherical coordinates, as far as I know. But it does have a built-in function to convert from cylindrical to Cartesian, which I use below.
z=0:200; theta=z*pi/25; r=1-z/400;
[x,y,z]=pol2cart(theta,r,z); %convert cylindrical to Cartesian coords
figure;
subplot(121); polar(theta,r); %polar plot
subplot(122); plot3(x,y,z); %3D plot
I hope that helps.
  4 Kommentare
David Harra
David Harra am 11 Aug. 2022
Hi William
I think that is my issue/ lack of understanding.
What you siad makes perfect sense, but I actually thought 1/v would be plotted in the z-direction as this shows the variation in velocity. I might need to revisit some of the maths etc.
Thanks for the input- its massively appreciated.
Thanks
Dave :)
William Rose
William Rose am 17 Aug. 2022
@David Harra, you're welcome.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by