Filter löschen
Filter löschen

Solve nonlinear 2nd order ODE numerically

1 Ansicht (letzte 30 Tage)
Lucas
Lucas am 28 Jul. 2022
Kommentiert: MOSLI KARIM am 12 Aug. 2022
I need to solve the following nonlinear 2nd order ODE, that is, find such that
1-x=-\frac{y''(x)}{(1+(y'(x))^2)^{{3/2}}
I tried using
>> syms y(x)
>> ode = -diff(y,x,2)/(1+(diff(y,x))^2)^(3/2) == 1-x;
>> ySol(x) = dsolve(ode)
but it doesn't work since apparently there is no anaylitical solution (if I rearrange the terms it does find a system of complex solutions, but I think the it is not right).
Isn't there a command to solve ODEs numerically? I am expeting something like the family of plots from here https://www.wolframalpha.com/input?i=f%27%27%28t%29%2F%28%281%2B%28f%27%28t%29%29%5E2%29%5E%283%2F2%29%29+%3D+-%281-0.25t%29
Many thanks oin advance!
  2 Kommentare
Torsten
Torsten am 28 Jul. 2022
What are your initial/boundary conditions for y ?
Lucas
Lucas am 29 Jul. 2022
My idea was to screen these conditions to find one that satisfies my problem.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Sam Chak
Sam Chak am 28 Jul. 2022
You can follow the example here
and try something like this:
tspan = [0 1.15];
y0 = [1 0]; % initial condition
[t,y] = ode45(@(t, y) odefcn(t, y), tspan, y0);
plot(t, y(:,1)), grid on, xlabel('t')
function dydt = odefcn(t, y)
dydt = zeros(2,1);
c = 0.25;
dydt(1) = y(2);
dydt(2) = - (1 - c*t)*(1 + y(2)^2)^(3/2);
end

Weitere Antworten (2)

James Tursa
James Tursa am 28 Jul. 2022

MOSLI KARIM
MOSLI KARIM am 12 Aug. 2022
function pvb_pr13
tspan=[0 1.5];
y0=[1 0];
[x,y]=ode45(@fct,tspan,y0);
figure(1)
hold on
plot(x,y(:,1),'r-')
grid on
function yp=fct(x,y)
c=0.25;
yp=[y(2);-(1-c*x)*((1+(y(2))^2)^(3/2))];
end
end

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by