Grid search in svm
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
SP
am 20 Jul. 2022
Kommentiert: Walter Roberson
am 22 Jul. 2022
Hi,
I am having training data (train.mat) and testing data (test.mat), I need to perform grid search in this. How can I do svm training with this? Kindly help me with this. Thanks in advance.
2 Kommentare
Akzeptierte Antwort
Walter Roberson
am 20 Jul. 2022
Nbox = 15; %change these as desired
Nkern = 10; %change these as desired
bcvec = logspace(-3, 3, Nbox);
ksvec = logspace(-3, 3, Nkern);
goodness = zeros(Nbox, Nkern);
for ksidx = 1 : Nkern
ks = ksvec(ksidx);
for bcidx = 1 : Nbox
bc = bcvec(bcidx);
mdl = fitcsvm(Training_Data, Training_Class, ...
'Standardize', true, ...
'KernelFunction','rbf', ...
'BoxConstraint', bc, ...
'KernelScale', ks);
predictions = predict(mdl, Test_Data);
correct_matches = nnz(predictions == Test_Class);
goodness(bcidx, ksidx) = correct_matches;
end
end
best_score = max(goodness(:));
[bcidx, ksidx] = find(goodness == best_score);
best_bc = bcvec(bcidx);
best_ks = ksvec(ksidx);
best_fits = table(best_bc, best_ks, 'VariableNames', {'BoxConstraint', 'KernelScale'});
The output will be a table, best_fits, listing all of the combinations of BoxConstraint and KernelScale that together lead to the best scores discovered, where "score" here is determined [in this code] solely by the number of correct matches.
You would have to change how the goodness is calculated if you wanted to be concerned about aspects such as balancing the accuracies of the various classes. With the current code, if it was (for example) 100% successful in matching the largest class, and 0% successful in all of the other classes, then the goodness calculated by this code might be as high as it gets, even though it might be terrible for the other classes. You would probably be better off calculating the goodness some other way.
6 Kommentare
Walter Roberson
am 22 Jul. 2022
temp = load('train.mat');
Training_Data1 = temp.finaltrain(:,1:end/2);
Training_Data2 = temp.finaltrain(:,end/2+1:end);
Training_Data = [Training_Data1; Training_Data2];
Training_Class = [ones(size(Training_Data1, 1), 1); 2*ones(size(Training_Data2,1),1)];
temp = load('test.mat');
Test_Data1 = temp.finaltest(:,1:end/2);
Test_Data2 = temp.finaltest(:,end/2+1:end);
Test_Data = [Test_Data1; Test_Data2];
Test_Class = [ones(size(Test_Data1, 1), 1); 2*ones(size(Test_Data2,1),1)];
Nbox = 25; %change these as desired
Nkern = 20; %change these as desired
bcvec = logspace(-3, 3, Nbox);
ksvec = logspace(-3, 3, Nkern);
goodness = zeros(Nbox, Nkern);
wb = waitbar(0, 'please wait, processing kernel scales');
cleanMe = onCleanup(@() delete(wb));
for ksidx = 1 : Nkern
waitbar(ksidx/Nkern, wb);
ks = ksvec(ksidx);
for bcidx = 1 : Nbox
bc = bcvec(bcidx);
mdl = fitcsvm(Training_Data, Training_Class, ...
'Standardize', true, ...
'KernelFunction','rbf', ...
'BoxConstraint', bc, ...
'KernelScale', ks);
predictions = predict(mdl, Test_Data);
correct_matches = nnz(predictions == Test_Class);
goodness(bcidx, ksidx) = correct_matches;
end
end
clear cleanMe %get rid of waitbar
best_score = max(goodness(:));
[bcidx, ksidx] = find(goodness == best_score);
best_bc = bcvec(bcidx);
best_ks = ksvec(ksidx);
best_fits = table(best_bc, best_ks, 'VariableNames', {'BoxConstraint', 'KernelScale'});
best_fits
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Genomics and Next Generation Sequencing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!