Filter löschen
Filter löschen

How I can give condition & plot the solution of this differential equation. . . . . . . Please Guide

3 Ansichten (letzte 30 Tage)
This is the equation for which
boundery condition are
theta(z=0)=0 degree
theta(z=h)=90 degree
where h=6
z=0:h
how to give condition here
e=8.85*10^-12
dele=11
E=1
k11=9
k33=9
k22=11
syms theta(z) z dtheta
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn=d2theta+((k33-k11)*cos(theta)*sin(theta))*(dtheta)^2*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))+e*dele*E^2*cos(theta)*sin(theta)*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))
cond(theta(0)==0, theta(pi/2)==0)
thetaSol = dsolve(eqn,cond)
thetaSol = unique(simplify(thetaSol))
fplot(thetaSol)
  7 Kommentare

Melden Sie sich an, um zu kommentieren.

Antworten (3)

Torsten
Torsten am 22 Jul. 2022
Bearbeitet: Torsten am 22 Jul. 2022
dsolve doesn't succeed. Thus use a numerical solver (bvp4c) to solve your equation.
syms A theta(z)
dtheta=diff(theta,z)
dtheta(z) = 
d2theta=diff(theta,z,2)
d2theta(z) = 
eqn = d2theta + A/2*sin(2*theta)==0;
cond = [theta(0)==0, theta(6)==pi/2];
thetaSol = dsolve(eqn,cond)
Warning: Unable to find symbolic solution.
thetaSol = [ empty sym ]
  7 Kommentare
DEEPAK KARARWAL
DEEPAK KARARWAL am 28 Jul. 2022
yes sir, but what I want, is to give such a boundery condition at theta(z)=(__) such that I will get varying angle from 0 to 90 degree as we increase the value of E, where E is electric field and contained in the expression of A.
Torsten
Torsten am 28 Jul. 2022
Not clear what you mean.
The boundary value for theta at z = 6 can be set by writing it in the variable "bv" of my code above. Experiment with it.

Melden Sie sich an, um zu kommentieren.


Sam Chak
Sam Chak am 22 Jul. 2022
Giiven the parameters, it seems that if you select initial values and , the boundary values are satisfied.
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
f = @(t, x) [x(2); ...
- (A/2)*sin(2*x(1))];
tspan = [0 6];
initc = [0 pi/12]; % initial condition
[t, x] = ode45(f, tspan, initc);
plot(t, x(:,1), 'linewidth', 1.5), grid on, xlabel('t'), ylabel('\theta')
x(end,1) % π/2 at θ(6)
ans = 1.5708

MOSLI KARIM
MOSLI KARIM am 16 Feb. 2023
%%
function answer
clc
clear all
close all
global A
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
solinit=bvpinit(linspace(0,6),[0;pi/12])
sol=bvp4c(@fct,@bc,solinit)
figure(1)
plot(sol.x,sol.y(1,:))
function dxdy=fct(x,y)
dxdy=[y(2); -(A/2)*sin(2*y(1))];
end
function res=bc(ya,yb)
res=[ya(1);yb(1)-90]
end
end

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by